M

Montage Montage is an astronomical image toolkit with components for reprojection, background matching, coaddition and visualization of FITS files. It can be used as a set of command-line tools (Linux, OS X and Windows), C library calls (Linux and OS X) and as Python binary extension modules.

The Montage source is written in ANSI-C and code can be downloaded from GitHub ( https://github.com/Caltech-IPAC/Montage ). The Python package can be installed from PyPI ("</i>pip install MontagePy"). The package has no external dependencies. See http://montage.ipac.caltech.edu/ for details on the design and applications of Montage.

MontagePy.main modules: mProject

The Montage modules are generally used as steps in a workflow to create a mosaic of a set of input images. These steps are: determine the geometry of the mosaic on the sky, reproject the images to a common frame and spatial sampling; rectify the backgrounds to a common level, and coadd the images into a mosaic. This page illustrates the use of one Montage module, mProject, which is one of the modules used to reproject images.

Visit Building a Mosaic with Montage to see how mProject is used as part of a workflow to creage a mosaic (or the one shot version if you just want to see the commands). See the complete list of Montage Notebooks here.

In [1]:
from MontagePy.main import mProject, mViewer

help(mProject)
Help on built-in function mProject in module MontagePy.main:

mProject(...)
    mProject reprojects a single image to the scale defined in a FITS header template file. The program produces a pair of images: the reprojected image and an 'area' image consisting of the fraction input pixel sky area that went into each output pixel. The algorithm proceeds by mapping pixel corners (as adjusted by drizzle, if set) from the input pixel space to the output pixel space, calculating overlap area with each output pixel, and accumulating an appropriate fraction of the input flux into the output image pixels. In addition, the appropriate fraction of the input pixel area is accumulated into the area image pixels. Projection of points from input pixel space to output pixel space is calculated in two steps: first map from input pixel space to sky coordinates; second map from sky coordinates to output pixel space.
    
    Parameters
    ----------
    input_file : str
        FITS file to reproject.
    output_file : str
        Reprojected FITS file.
    template_file : str
        FITS header file used to define the desired output.
    hdu : int, optional
        Optional HDU offset for input file.
    weight_file : str, optional
        Optional pixel weight FITS file (must match input).
    fixedWeight : float, optional
        A weight value used for all pixels.
    threshold : float, optional
        Pixels with weights below this level treated as weight 0.
    borderstr : str, optional
        Single border width number or pixel polygon pair list for masking.
    drizzle : float, optional
        Optional pixel area 'drizzle' factor.
    fluxScale : float, optional
        Scale factor applied to all pixels.
    energyMode : bool, optional
        Pixel values are total energy rather than energy density.
    expand : bool, optional
        Expand output image area to include all of the input pixels.
    fullRegion : bool, optional
        Do not 'shrink-wrap' output area to non-blank pixels.
    debug : int, optional
        Debugging output level.
    
    
    Returns
    -------
    status : int
        Return status (0: OK, 1:ERROR).
    msg : str
        Return message (for errors).
    time : float
        Total processing time (sec).

mProject Example

mProject is one of four modules focused on the task of reprojecting an astronomical image. It is totally general (any projection and coordinate system) and flux-conserving but is also the slowest. The algorithm is based on pixel overlap in spherical sky coordinates rather than in the input or output planar pixel space.

mProject has a number of extra controls for things like toggling from the normal flux-density mode to total energy mode or excluding a border (image borders often have bad pixels). But the basic inputs are a FITS image and a FITS header describing the output image we want. In all cases, the only output is a FITS image with the data from the input resampled to the output header pixel space.

The input FITS header (actually an ASCII file that looks like a FITS header but with newlines and unpadded line lengths) can be produced in a number of ways. There are Montage tools to take an image list (or point source list) and determine a bounding box (mMakeHdr) or just a location and size (mHdr). You can also pull the header off another file (mGetHdr) if you want to build a matching mosaic from other data. Or you can just create the output header by hand (e.g., a simple all-sky Aitoff projection).

Here we have pulled the header from the input image and edited it by hand to modify the rotation by 30 degrees.

In [2]:
rtn = mProject('M17/raw/2mass-atlas-990502s-j1340186.fits', 
               'work/M17/2mass-atlas-990502s-j1340186_project.fits', 
               'M17/rotated.hdr')
print(rtn)
{'status': '0', 'time': 218.0}

Before and After

Here are the original image and the reprojected one:

In [3]:
from IPython.display import Image

rtn = mViewer("-ct 1 -gray M17/raw/2mass-atlas-990502s-j1340186.fits \
               -2s max gaussian-log -out work/M17/2mass-atlas-990502s-j1340186.png",
              "", mode=2)
print(rtn)

Image(filename='work/M17/2mass-atlas-990502s-j1340186.png')
{'status': '0', 'type': b'grayscale', 'nx': 512, 'ny': 1024, 'grayminval': 142.85527071691192, 'grayminpercent': 0.0, 'grayminsigma': -2.0, 'graymaxval': 8543.951171875, 'graymaxpercent': 100.0, 'graymaxsigma': 2225.7597600568683, 'blueminval': 0.0, 'blueminpercent': 0.0, 'blueminsigma': 0.0, 'bluemaxval': 0.0, 'bluemaxpercent': 0.0, 'bluemaxsigma': 0.0, 'greenminval': 0.0, 'greenminpercent': 0.0, 'greenminsigma': 0.0, 'greenmaxval': 0.0, 'greenmaxpercent': 0.0, 'greenmaxsigma': 0.0, 'redminval': 0.0, 'redminpercent': 0.0, 'redminsigma': 0.0, 'redmaxval': 0.0, 'redmaxpercent': 0.0, 'redmaxsigma': 0.0, 'graydatamin': 143.695556640625, 'graydatamax': 8543.951171875, 'bdatamin': 0.0, 'bdatamax': 0.0, 'gdatamin': 0.0, 'gdatamax': 0.0, 'rdatamin': 0.0, 'rdatamax': 0.0, 'flipX': 0, 'flipY': 1, 'colortable': 1, 'bunit': b''}
Out[3]:
In [4]:
rtn = mViewer("-ct 1 -gray work/M17/2mass-atlas-990502s-j1340186_project.fits \
               -2s max gaussian-log -out work/M17/2mass-atlas-990502s-j1340186_project.png",
              "", mode=2)
print(rtn)

Image(filename='work/M17/2mass-atlas-990502s-j1340186_project.png')
{'status': '0', 'type': b'grayscale', 'nx': 949, 'ny': 1142, 'grayminval': 142.85922821780923, 'grayminpercent': 0.0, 'grayminsigma': -2.0, 'graymaxval': 8297.618992713538, 'graymaxpercent': 100.0, 'graymaxsigma': 2141.72617612838, 'blueminval': 0.0, 'blueminpercent': 0.0, 'blueminsigma': 0.0, 'bluemaxval': 0.0, 'bluemaxpercent': 0.0, 'bluemaxsigma': 0.0, 'greenminval': 0.0, 'greenminpercent': 0.0, 'greenminsigma': 0.0, 'greenmaxval': 0.0, 'greenmaxpercent': 0.0, 'greenmaxsigma': 0.0, 'redminval': 0.0, 'redminpercent': 0.0, 'redminsigma': 0.0, 'redmaxval': 0.0, 'redmaxpercent': 0.0, 'redmaxsigma': 0.0, 'graydatamin': 143.87211172653642, 'graydatamax': 8297.618992713538, 'bdatamin': 0.0, 'bdatamax': 0.0, 'gdatamin': 0.0, 'gdatamax': 0.0, 'rdatamin': 0.0, 'rdatamax': 0.0, 'flipX': 0, 'flipY': 1, 'colortable': 1, 'bunit': b''}
Out[4]:

mProject Error Handling

If mProject encounters an error, the return structure will just have two elements: a status of 1 ("error") and a message string that tries to diagnose the reason for the error.

For instance, if the user asks for an image that doesn't exist:

In [9]:
rtn = mProject('M17/raw/unknown.fits', 
               'work/M17/2mass-atlas-990502s-j1340186_project.fits', 
               'M17/rotated.hdr')
print(rtn)
{'status': '1', 'msg': b'File M17/raw/unknown.fits not found.'}

 

Classic Montage: mProject as a Stand-Alone Program

Unix/Windows Command-line Arguments

mProject can also be run as a command-line tool in Linux, OS X, and Windows:

Usage: mProject [-z factor][-d level][-s statusfile][-h hdu][-x scale][-w weightfile][W fixed-weight][-t threshold][-X(expand)][-b border-string][-e(nergy-mode)][-f(ull-region)] in.fits out.fits hdr.template

 

mProject as a Library Call

If you are writing in C/C++ on Linux or OSX, mProject can be accessed as a library function:

/*-***********************************************************************/
/*                                                                       */
/*  mProject                                                             */
/*                                                                       */
/*  Montage is a set of general reprojection / coordinate-transform /    */
/*  mosaicking programs.  Any number of input images can be merged into  */
/*  an output FITS file.  The attributes of the input are read from the  */
/*  input files; the attributes of the output are read a combination of  */
/*  the command line and a FITS header template file.                    */
/*                                                                       */
/*  This module, mProject, processes a single input image and            */
/*  projects it onto the output space.  It's output is actually a pair   */
/*  of FITS files, one for the sky flux the other for the fractional     */
/*  pixel coverage. Once this has been done for all input images,        */
/*  mAdd can be used to coadd them into a composite output.              */
/*                                                                       */
/*  Each input pixel is projected onto the output pixel space and the    */
/*  exact area of overlap is computed.  Both the total 'flux' and the    */
/*  total sky area of input pixels added to each output pixel is         */
/*  tracked, and the flux is appropriately normalized before writing to  */
/*  the final output file.  This automatically corrects for any multiple */
/*  coverages that may occur.                                            */
/*                                                                       */
/*  The input can come from from arbitrarily disparate sources.  It is   */
/*  assumed that the flux scales in the input images match, but this is  */
/*  not required (leading to some interesting combinations).             */
/*                                                                       */
/*   char  *input_file     FITS file to reproject                        */
/*   char  *output_file    Reprojected FITS file                         */
/*   char  *template_file  FITS header file used to define the desired   */
/*                         output                                        */
/*                                                                       */
/*   int    hdu            Optional HDU offset for input file            */
/*   char  *weight_file    Optional pixel weight FITS file (must match   */
/*                         input)                                        */
/*                                                                       */
/*   double fixedWeight    A weight value used for all pixels            */
/*   double threshold      Pixels with weights below this level treated  */
/*                         as blank                                      */
/*                                                                       */
/*   char  *borderstr      Optional string that contains either a border */
/*                         width or comma-separated 'x1,y1,x2,y2, ...'   */
/*                         pairs defining a pixel region polygon where   */
/*                         we keep only the data inside.                 */
/*                                                                       */
/*   double drizzle        Optional pixel area 'drizzle' factor          */
/*   double fluxScale      Scale factor applied to all pixels            */
/*   int    energyMode     Pixel values are total energy rather than     */
/*                         energy density                                */
/*   int    expand         Expand output image area to include all of    */
/*                         the input pixels                              */
/*   int    fullRegion     Do not 'shrink-wrap' output area to non-blank */
/*                         pixels                                        */
/*   int    debug          Debugging output level                        */
/*                                                                       */
/*************************************************************************/

struct mProjectReturn *mProject(char *input_file, char *ofile, char *template_file, int hduin,
                                char *weight_file, double fixedWeight, double threshold, char *borderstr,
                                double drizzle, double fluxScale, int energyMode, int expand, int fullRegion, 
                                int debugin)

Return Structure

struct mProjectReturn
{
   int    status;        // Return status (0: OK, 1:ERROR)
   char   msg [1024];    // Return message (for error return)
   char   json[4096];    // Return parameters as JSON string
   double time;          // Run time (sec)   
};