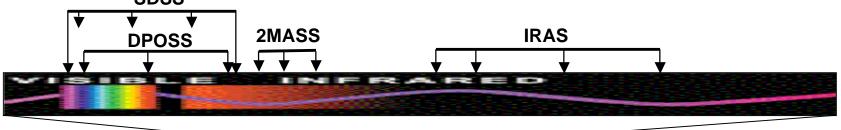
Montage: Architecture and Applications of an Astronomical Image Mosaic Engine

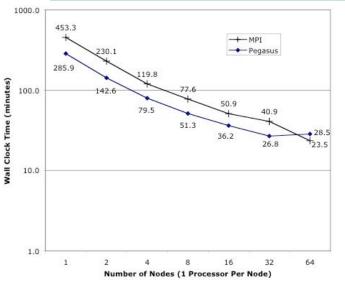

http://montage.ipac.caltech.edu/

Bruce Berriman, John Good and Anastasia Laity ^{IPAC} Joseph C. Jacob and Daniel S. Katz ^{JPL} Ewa Deelman, Gurmeet Singh and Mei-Hui Su ^{ISI} Thomas Prince ^{Caltech}

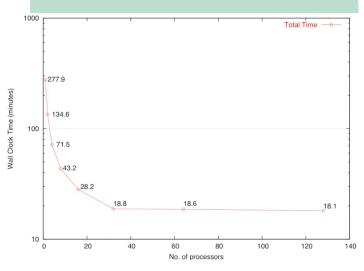
Science Drivers for Montage

- Imaging surveys are addressing fundamental questions in astronomy
- Montage overcomes limitations in maximizing scientific return from these image datasets
 - Many astrophysical structures are extended and structure on the sky contaminated by variable background radiation from instrument or sky
 - Survey results are published in widely varying coordinates, map projections, sizes and spatial resolutions => limits study of structures and sources over multiple wavelengths
- Montage delivers science grade image mosaics
 - Preserves astrometry and flux of input images
 - Delivers mosaic according to users specifications of projection, coordinates, spatial sampling, mosaic size, image rotation
 - Rectifies background radiation to a common level SDSS

Montage Design Drivers


- Major design drivers
 - Support generation of data products by incorporating Montage into pipelines & processing environments
 - Support variety of hardware architectures used by astronomers: single processor; a cluster of multiple processors with a shared file system; multiple clusters, each with a shared file system; grid processing
 - Support on-request image mosaic requests submitted through a web interface
- Montage Architecture
 - Stand-alone "core" processing modules for performing steps in developing image mosaic
 - Reprojection of input images; rectification of background radiation to a common level; co-addition of rectified, reprojected images to form mosaic
 - Utilities for managing mosaics tiling, creating browse products, ...
 - Processing flow controlled by calls to simple executives
 - Code written in ANSI C for performance and portability

Design Drivers cont


- Montage Architecture Parallel Technologies
 - Message Passing Interface (MPI)
 - Best performance
 - Requires a set of processors with a shared file system

Wall Clock Times to Build 6 x 6 Deg mosaic for MPI and Grid

- Grid Technology
 - Very good performance
 - •Built-in fault tolerance
 - •Can use multiple sets of processors

6 x 6 degree 2MASS Mosaic, NCSA TeraGrid Pegasus Portal

Applications of Montage - I

- Generation of Science Data Products
 - Visible and Infrared Survey Telescope for Astronomy (VISTA)

- (under evaluation)
- Spitzer Space Telescope Legacy Projects
 - SWIRE trace the evolution of dusty, star-forming galaxies, evolved stellar populations, and active galactic nuclei to redshifts of z ~ 3

- GLIMPSE and MIPSGAL infrared surveys of galactic plane to study global history of star formation and energetics of interstellar medium
- COSMOS Hubble Treasury Program
 - Multi-wavelength studies of the large scale distribution of matter in the Universe
- The INT/WFC Photometric H-alpha Survey (IPHAS) of the Northern Galactic Plane

- Deep survey in the red (Sloan R and I bands)
- National Virtual Observatory
 - All-Sky 2MASS mosa ESTC 06, June 27-29 2006

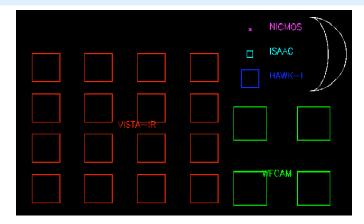
Applications of Montage -II

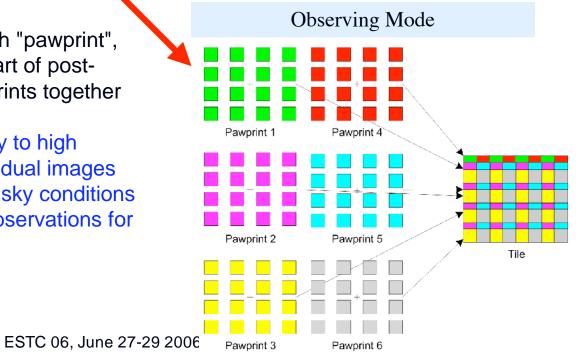
- Incorporation into Science Processing and Data Access Environments
 - Spitzer Space Telescope Outreach
 - Generating as educational products distributed through the *Cool Cosmos* website
 - Leverages Montage's capabilities of generating mosaics in uncommon projections, often the best one for E/PO products
 - IRSA (NASA's InfraRed Science Archive)

- Supports services for accessing all-sky image surveys
- Includes creation of browse products, image cutout services
- NSF National Virtual Observatory (NVO) Atlasmaker project
 - Hyperatlas grid, a standard set of image parameters for displaying image data sets originally in different projections, coordinates, ...
 - Leveraging Montage to deliver tools that will generate map images showing spatial coverage of astronomical data sets
- UK Astrogrid Virtual Observatory
 - Montage adopted as a "key application" for end users to generate custom mosaics

Applications - VISTA

Visible and Infrared Survey Telescope for Astronomy (2007)

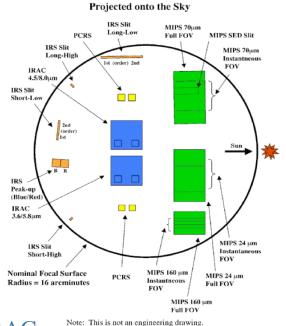

- 4-m class imaging survey telescope in Chile
- 67-million pixel camera (1.6 deg FoV)


Evaluation of Montage

•Six stepped exposures fill a "Tile" with at least two exposures

- •Automated pipeline processes each "pawprint",
- Montage is under evaluation as part of postpipeline backend to stitch the pawprints together to create the tile
 - Compute the image geometry to high precision and co-add the individual images
 - Compensate for variability in sky conditions
 - Reprojection of supporting observations for quality assurance

Field of View of the 16 2048 x 2048 arrays



GLIMPSE and MIPSGAL: Complementary Surveys of the Galactic Plane

Survey	Instrument	Bands (µm)	Field-of-View (arcmin)
GLIMPSE	IRAC	3.5, 4.5, 5.8, 8.0	5.2. x 5.2
MIPSGAL	MIPS	24	5.4 x 5.4
		70	5.25 x 2.6
		160	0.5 x 0.5

Generate "multi-wavelength" images of the Galactic as a resource for studying star formation - process IRAC, MIPS, Midcourse Space Experiment (8.3, 12.1, 14.6 and 21.3 μ m) and 2MASS (1.2, 1.6 and 2.2 μ m)

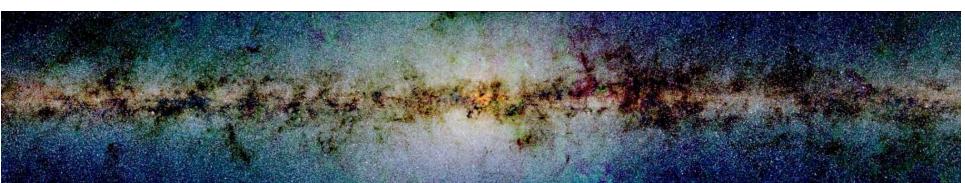
Nominal Field-of-View Locations

Three-color section of the Galactic Plane measured by the IRAC

Applications -2MASS All Sky Mosaic

Why Build An All-Sky Mosaic?

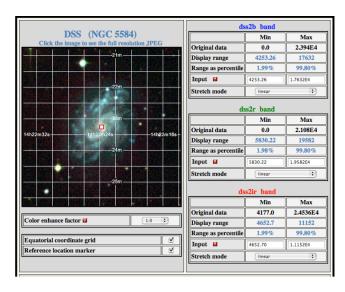
- •Value-added 2MASS product combines overlapping images and includes deep survey data
- •Demonstrate applicability of computing at scale to astronomical image data sets
 - pathfinder for future missions
- •Demonstrate management of data sets at scale
- •Shakedown TeraGrid hardware at SDSC


Input : 4,121,440 files, 2 MB in size (32-bits)

Output

- 1734 x 4 GB plates 6 deg on a side for 3 bands (64 bits)
 - Each plate tiled into a 12x12 array of 26-MB files
- The total size is about 20 TB in 750,000 tiles

Processing Statistics


- MPI Python module managed the process
- •13,000 CPU hours
- Files on mosaic boundaries opened multiple times
 - •14 TB in 6,275,494 files opened

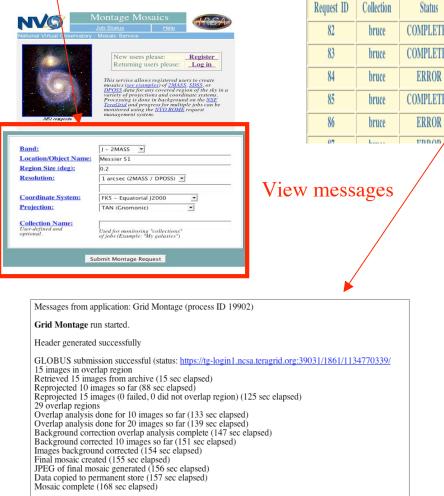
Below: Section of 3-color 2MASS mosaic along the Galactic plane

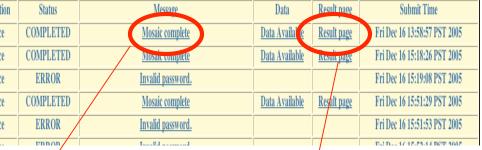
Applications - All Sky Image Access

2MASS (NGC 55	(84)	11.		J band				
Click the image to see the full reso				Min	Max			
210			Original data	0.0	1467.08			
	12 10 10		Display range	98.7679	128.956			
	63 0 S S		Range as percentile	10.00%	99.90%			
			Input 🖬	10%	99.9%			
			Stretch mode	gaussian	:			
			1	H band				
				Min	Max			
14h22m32s	14h22m16s		Original data	0.0	2329.89			
	12 6 62		Display range	419.366	457.457			
			Range as percentile	10.00%	99.90%			
			Input 🖬	10%	99.9%			
-25m			Stretch mode	gaussian	:			
			Ks band					
				Min	Max			
Color enhance factor	1.0 \$	111	Original data	0.0	2212.75			
		1	Display range	422.656	452.326			
Equatorial coordinate grid			Range as percentile	10.00%	99.90%			
Reference location marker			Input 🛛	10%	99.9%			
2MASS artifacts	2		Stretch mode	gaussian	:)			

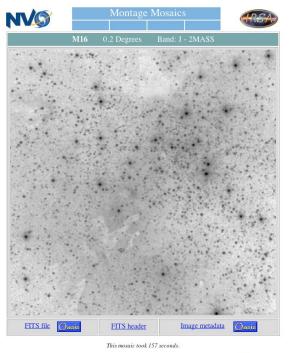
http://irsa.ipac.caltech.edu/applications/FinderChart

- IRSA's Finder Chart Service
 - Creates on-demand 3-color images of three major sky surveys - SDSS, 2MASS, DSS
- Quick Look Quality Assurance of fields astronomers are observing
 - Are moving objects real or artificial?
 - Are objects of unusual color inherent in the object or the field it is in?

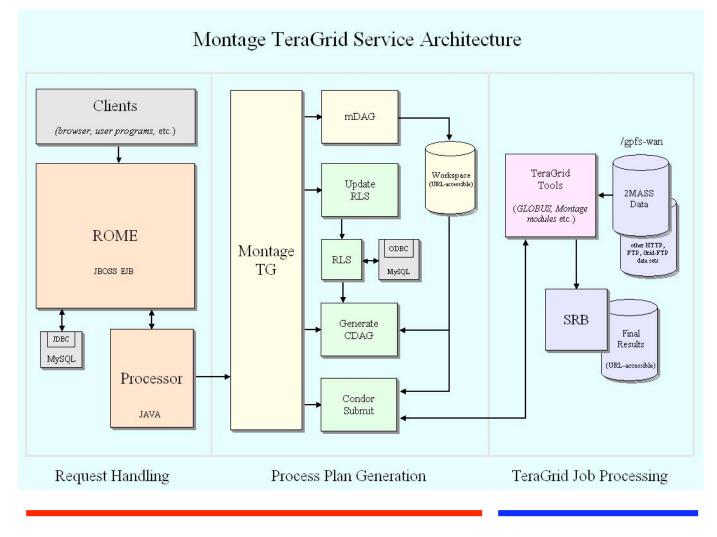

Left: 3-color images of the the Galaxy NGC 5584 in the 2MASS and DSS surveys


An On-Request Compute Service

Enter mosaic request

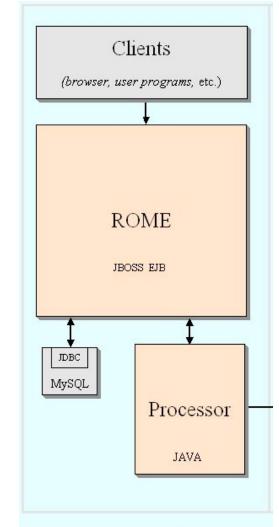

Results: <u>here</u> Mosaic complete.

Monitor job status


View and download mosaic

ESTC 06, June 27-29 200

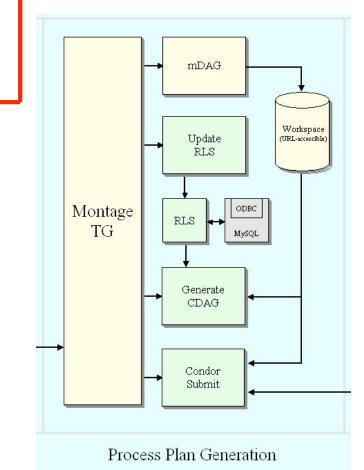
For more information on using Oasis for data display and analysis, click here Processing history



IPAC ESTC 06, June 27-29 2006 TeraGrid

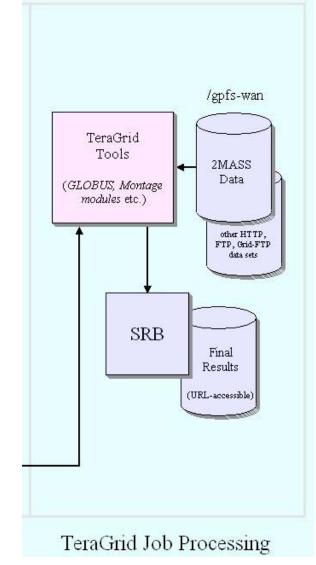
Request Handling

- Request Management Environment (ROME).
 - Developed at IPAC for the NVO
 - Enterprise Java Beans (EJBs)
 - Accept processing requests from users (via servelets)
 - Manage processing queues
 - Ensure that resources distribute processing among users
 - Handles monitoring and user notification

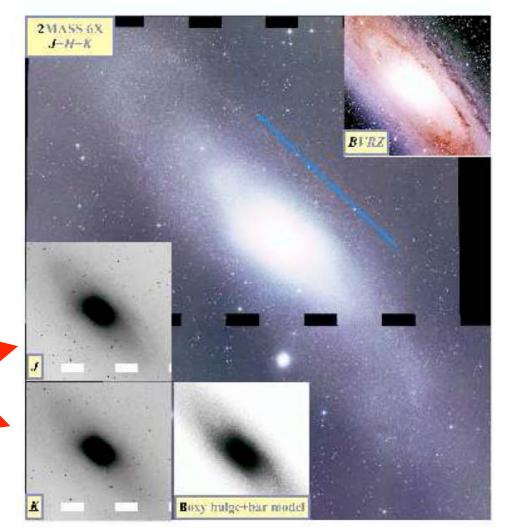

Request Handling

Process Plan Generation

- Montage application implemented via a Condor DAG (Directed Acyclic Graph)
 - Generate an abstract DAG
 - Process input parameters, set up storage space
 - Query resources to discover images needed
 - Pegasus processes abstract DAG into a Condor-specific DAG targeting TeraGrid resources.
 - Pegasus in turn utilizes the Globus Replication Location Service (RLS) to find physical location of file resources


Custom to Montage

TeraGrid Processing


- TeraGrid tools. This environment processes the mosaic
 - Marshals compute resources and intermediate file storage space,
 - Handles errors by rescheduling subtasks, reports results back through the submitting machine to ROME and thence to the user.
- Uses copy of the 2MASS data stored at SDSC in a distributed file system (/gpfs-wan) as input
- Places results in a URL-accessible location within SDSC's Storage Resource Broker (SRB) system.
- Flexible design backend can be, e.g., a Condor pool
 - IPAC installing 20-machine cluster of Dell Dual Core 2-processor 3.2 GHz Xeon compute servers at IPAC.

Science Result - Verification of a Bar in the Spiral Galaxy M31

- Beaton et al. Ap J Lett in press
- Montage used to generate mosaic of M31 galaxy
- Background rectification brings out "boxy bulge"signature of bar

Summary

- Use of Montage in astronomy is growing
 - Generation of science products
 - Performing scientific research
 - Performing "pathfinder" studies in demonstrating processing of images at scale
- On-request service under evaluation by astronomers and will be publicly deployed in Fall 2006
- To learn more, visit the project web site at http://montage.ipac.caltech.edu/

Right: 3-color mosaic of the star formation region NGC 6357

"War and Peace Nebula"

Combines MSX and 2MASS data sets; 2.5 degree square mosaic - 9,000 pixels on a side

