

Software Test Plan for

MONTAGE
An Astronomical Image Mosaic Service for the National

Virtual Observatory

Version 1.0 (September 24, 2002)

 2

MONTAGE SOFTWARE TEST PLAN REVISION HISTORY

Description of Revision Date

Initial Release – Version 1.0 September 24, 2002

 3

Table of Contents

1. Purpose of this Document .. 4
2. What is Montage? ... 4
3. Test Schedule... 4
4. Software Test Environment ... 5

4.1 Definition of Test Processes.. 5
4.2 Test Platforms ... 7
4.3 Test Environments and Test Datasets.. 7

5. Structure of the Test Plan .. 9
5.1 Montage Test Suites.. 12
5.2 Entrance and Exit Criteria for Test Suites.. 14
5.3 Test Plan Scope and Schedule.. 15

6 Test Approach and Methodology ... 16
6.1 Drivers and Test Tools.. 16
6.2 Specifications of Test Cases.. 16
6.3 Test Case Tracking ... 17
6.4 Quality Assurance Tools... 17

6.4.1 Requirements Traceability Matrix... 18
6.4.2 Defect Tracking.. 19
6.4.3 Software testing metrics .. 20

7 Resources and Responsibilities. .. 20
References.. 21
Acronyms... 22

 4

1. Purpose of this Document

The purpose of this document is to describe a test plan for Montage, an astronomical
image mosaic service for the NVO. This plan identifies the test platforms and test
processes that are needed, describes the test processes that will be performed, the scope
and schedule for executing the test plans, describes the scope, approach & methodology,
resources & responsibilities and high-level schedule for the testing activities. It will
identify the software items and features under test, the test tasks that will be performed
and the personnel responsible for each task.

Individual test cases that meet the standards described in this document will be developed
and performed for each release according to the schedule given in Table 1. The risks
associated with the plan will be tracked in the same way as other project risks, as
described in the Montage Software Engineering plan [1].

2. What is Montage?

Montage is an exemplar compute-intensive service for the National Virtual Observatory
(NVO). It will deliver on demand science-grade astronomical image mosaics that satisfy
user-specified parameters of projection, coordinates, size, rotation and spatial sampling.
Science-grade in this context means that the impact of the removal of terrestrial and
instrumental backgrounds on the fidelity of the data is understood over different spatial
scales. The service will deliver mosaics of images released by the 2 Micron All Sky
Survey (2MASS), the Digital Palomar Sky Survey (DPOSS) and Sloan Digital Sky
Survey (SDSS) projects.

The computing challenge of Montage is to sustain a throughput of 30 square degrees (e.g.
thirty 1 degree x 1 degree mosaics, one 5.4 degrees x 5.4 degrees mosaic, etc.) per minute
on a 1024 x 400 MHz R12K Processor Origin 3000 or machine equivalent. Montage
represents an evolution of a baseline engine deployed at JPL, yourSky. Incremental
deliveries in 2003 and 2004 will progressively improve the science quality, speed and
portability of the baseline code. The final deployment will be in January 2005.

Montage will run operationally on the TeraGrid, (http://www.npaci.edu/teragrid/). Users
will submit requests to Montage through existing astronomical portals, and visualize and
interact with the delivered mosaics through the same portals.

A fully documented, portable version of the software will be publicly available for
running on local clusters and individual workstations. The compute engine will be quite
general and will allow users to build mosaics from their own FITS format data.

3. Test Schedule

 5

Table 1 gives the test schedule for each release of Montage. This schedule includes
design and execution of test cases, code updates to correct defects, subsequent
regression testing, and final review and sign-off of all test items by the QA officer.

Table 1: Test Schedule for Montage

Milestone &
Due Date

Test Case
Specification

Test Case
Execution

Code
Updates

Regression
Testing

Sign off
by QA

F: 2/28/2003 10/30/2002 1/20/2003 2/1/2003 2/15/2003 2/20/2003
I: 8/15/2003 4/20/2003 6/25/2003 7/25/2003 8/5/2003 8/10/2003
G: 2/28/2004 10/30/2003 1/20/2004 2/1/2004 2/15/2004 2/20/2004
J: 8/15/2004 4/20/2004 6/25/2004 7/25/2004 8/5/2004 8/10/2004
K: 1/10/2005 10/30/2003 12/1/2004 12/15/2004 12/31/2004 1/05/2005

4. Software Test Environment

The Montage project will be responsible for designing and executing test suites that fully
exercise the accuracy, stability and performance of Montage. Validation of the code for
astrometric and photometric accuracy of the output mosaics will be performed under the
guidance of the Customer Review Board. The validators will be scientists who will be
given access to the code before public release, in accordance with our policy for customer
release (Milestone H).

4.1 Definition of Test Processes

The following three types of test processes will be carried out, defined in Table 2:
• Software testing, including testing of individual components and of the Montage

service as a whole
• Installation testing from the ground up; that is, ensuring that dependent third party

libraries and Montage itself can all be built and run according to instructions supplied
with the code.

• Documentation testing. Montage will be delivered with system and user
documentation which must be complete and accurate.

Table 2: Definitions of Test Processes

Test Process Definition & Scope
Software Testing
Developer Testing Testing of individual modules by developers

• Test paths through modules
• Test interface to module

Functional Testing Testing of individual modules according to whether they

 6

satisfy entry and exit criteria
• Test that operations performed by the modules are

done correctly (e.g. output from a coded algorithm is
correct)

• Test interface:
o Bad data values (e.g. wrong data type)
o Input values out of bounds

• Test error conditions returned by module
o Files cannot be read
o Files cannot be created etc…

Functional testing will also be used to develop a series of
regression tests that will validate the interface of each
module.

Integration testing Exposes faults between interfaces
• Run system as a whole to ensure that interfaces

“talk” correctly to each other
• correct error conditions are returned when faults

between interfaces are found
System testing Ensures that requirements have been satisfied

• All requirements appropriate to that release are met
• Traced via Requirements Traceability Matrix

Regression testing Retest code on all supported platforms to ensure that new
defects have not been introduced through modifications to
other parts of the code.

The regression test suite will be built from the results of the
developer, functional, system, integration, performance and
installation test suites. The regression tests will validate the
paths through the code, functionality of the modules and
their interfaces, the performance of the system and the
fidelity and accuracy of the output mosaics (as specified in
the requirements), and the correct installation of the
software.

Regression testing will be performed via an automated
script throughout the project lifetime, following correction
for defects and new system builds.

Performance and Stress
testing

Ensures that MONTAGE will run at specifications, and to
what extent it will perform beyond the limits of its
specifications

Beta Testing Arrange for testing of MONTAGE at a site not involved in
development and testing

• Performed without a formal test plan; testers use
software as they would use it operationally

Acceptance Testing and Determine the accuracy and fidelity of the image mosaics

 7

Validation generated by Montage.
• Ensure that output mosaics are accurate with respect

to astrometry and photometry
• Ensure that MONTAGE does not introduce defects

into the mosaics
• Ensure that Montage correctly handles “bad” or low

quality input data

Will be largely performed in cooperation with astronomers
who are given access to the code before release.

Installation
Installation testing Determines that users can download, build and use

MONTAGE according to instructions provided with
Montage. Includes installation of dependent components.

Documentation
End User Manual Testing Document is complete, consistent and error-free. Includes

testing of the validation suite that will be delivered with
Montage.

4.2 Test Platforms

Successive milestones will emphasize testing on particular platforms, and when Montage
is delivered to the community in January 2005, we will have run a complete suite of tests
on all the platforms listed in Table 3 below. Testing on IRIX platforms will be
performed only as resources permit.

Table 3: Test Platforms and Operating Systems

Machine OS Availability
TeraGrid Red Hat Linux 6.2 Available as TeraGrid Lite.

Request for time approved
through NVO project

IBM Blue Horizon AIX 5L Account at SDSC approved
Linux Cluster Red Hat Linux 6.2 Account at CACR approved

Account at SDSC approved
as part of NVO test bed.

Solaris Workstations Solaris 2.7, 2.8 Available at IPAC
Linux workstations Red Hat Linux 6.2, 7.x Available at IPAC, CACR
IPG SGI O2K, O3K IRIX 6.5.x Account approved for JPL;

used for testing Montage
only as project resources
permit

4.3 Test Environments and Test Datasets

 8

Montage will use existing environments for testing. We do not plan to configure or build
special test platforms, other than the following standard practices:

• setting up directories on test machines for housing code and dataset;
• installing database client software for loading tables into databases and reading

them (vendor supplied or Open Source);
• installing dependent libraries as needed; these are standard astronomy libraries

identified in [2];
• Ensuring that the GNU “gcc” compiler is loaded on the test platform

This policy allows to us to test Montage under conditions that closely replicate those in
which customers will use it, and eliminates hardware purchase costs.

Montage will use image collections publicly released by 2MASS, DPOSS and SDSS as
test data sets. A description of these datasets and their disposition is given in [1]. We
also expect that customers will input their private image collections, assumed compliant
with the FITS standard. Ensuring that Montage will process these collections is an
important part of our test effort, and we will seek the guidance of the review board in
identifying potential data sets. This work will be absorbed into our validation plan, and
will be formally called out in our test cases as data collections are identified. The
remainder of this plan will lay out the test plan for the 2MASS, DPOSS and SDSS data
collections.

There are two classes of test environments required to support testing: grid or
supercomputer environments, used for operations, and users’ local environments. Each
environment requires access to processors, data sets, and a database (optional for users
performing their custom background rectification; they may input flat file containing the
necessary parameters).

Grid and Supercomputing Environments

• The Teragrid

o Hardware: Now under development. SDSC have provided a Linux cluster at
SDSC for testing of NVO compute intensive processes, which we will use
initially. This cluster (“Teragrid Lite”) will be part of the larger Teragrid.

o Database – SDSC are committed to providing database for this cluster by
12/2002; it will most likely be Sybase. This delivery date will not affect
testing Milestone F, as is emphasizes accuracy in the mosaic engine, rather
than speed; background rectification can be performed only through reading a
flat file, if necessary.

o Image collections – 2MASS: 4 TB of public data accessible through HPSS,
and SDSC now replicating on spinning disk; latter are preferred for testing,
but access through HPSS is acceptable (as now done by yourSky). DPOSS:
available through HPSS at CACR; will be replicated at SDSC for access by

 9

NVO software. SDSS: NVO will negotiate with SDSS to replicate their data
at SDSC; in the worst case, we will download public images from the SDSS
archive and replicate them manually at SDSC.

Workstation Environments

Montage will support the two most common platforms used in astronomy, Solaris 2.7/2.8
and Linux 6.x and 7.x.

• Solaris

o Solaris 2.7/2/8 Ultra 10 workstations at IPAC
o Database: Informix
o Image Collections: 2MASS quick look (browse) images for 47% of sky

archived at IPAC; replicate subsets of 2MASS image collection from SDSC,
subset of DPOSS from CACR; SDSS images from project archive

• Linux work stations
o Linux 6.2, 7.x PC’s at CACR
o Database: MySql
o Image Collections: replicate subsets of 2MASS Atlas and Quick look images

from IPAC and SDSC; full DPOSS collection; SDSS images from project
archive.

While the public image data sets from 2MASS, DPOSS and SDSS will be available for
test purposes, it is likely that a subset of them will be identified as especially valuable for
testing Montage. With the help of the data providers, we will identify images that are
particularly “difficult” to mosaic, because for example they contain an unusually high
proportion of “bad” or low-quality data. We may modify delivered data to create
dedicated “data files from hell” used to test Montage’s ability to handle exceptions and
out-of-bounds data. A subset of these data will be delivered with the Montage system
documentation as a validation test data set. The users’ guide will clearly describe whether
delivered test data are modifications of publicly released data.

5. Structure of the Test Plan

Montage consists of two engines [2]:

• A background rectification engine, used to generate parameters that will correct

individual images for terrestrial and instrumental backgrounds.
• A mosaic engine that performs reprojection, resampling, coordinate transformations,

image reprojections, co-additions and constructs the final mosaic.

The components of these engines are shown in Figure 1 and described in Table 4. A key
feature of each engine is that all its components are stand-alone, and we will therefore
develop a test suite for each component as if it were a software system in its own right,

 10

with teach suite executed for the platforms listed in Table 3. Following testing of the
individual components, we will test the rectification engine and the mosaic engines at the
system level by running the processing through the executive modules identified below;
these executives are simple front-ends whose sole purpose is to make the calls to
processing components, and return messages about the processing to the user. Indeed,
the background rectification component can be considered as three sub-components, each
run by its own executive, for processing overlaps, differences between pairs of images,
and for removing the background itself.

Figure 1: The Design Components of Montage

 11

Table 4: Descriptions of the Design Components of Montage
Components run through a common executive are shown with a

common background color

 12

Component Description
Mosaic Engine Components
mImgtbl Extracts the FITS header geometry information from a set of

files and creates an ASCII image metadata table from it used
by several of the other programs.

mProjExec A simple executive which runs mProject for each image
in an image metadata table.

mProject Reprojects a single image to the scale defined in a pseudo-
FITS header template file (an ASCII file with the output
image header lines, but not padded to 80 characters and with
new lines at the end of each line). Actually produces a pair of
images: the reprojected image and an "area" image consisting
of the fraction input pixel sky area that went into each output
pixel.

 mAdd Coadd the reprojected images using the same FITS header
template and working from the same mImgtbl list.

Background Rectification Components
mOverlaps Analyze an image metadata table to determine a list of

overlapping images.
mDiffExec Run mDiff on all the pairs identified by mOverlaps.
 mDiff

Perform a simple image difference between a single pair of
overlapping images. This is meant for use on reprojected
images where the pixels already line up exactly.

mFitExec Run mFitplane on all the mOverlaps pairs. Creates a
table of image-to-image difference parameters.

 mFitplane Fit a plane (excluding outlier pixels) to an image. Meant for
use on the difference images generated above.

mBgExec Run mBackground on all the images in the metadata table
 mBgModel Modeling/fitting program which uses the image-to-image

difference parameter table to interactively determine a set of
corrections to apply to each image to achieve a "best" global
fit.

mBackground

Remove a background from a single image (planar has
proven to be adequate for the images we have dealt with).

5.1 Montage Test Suites

We will develop complete test suites for the components identified in Table 4. Broadly
speaking, those components that perform the processing will be subject to developer,
installation and functional testing, and integration, system regression, performance, beta
and validation testing will be performed at the validation level. The Montage user

 13

documentation will describe individual components and the system as a whole, and so
documentation testing will be performed for all components.

One exception to the above rule will be made for the reprojection component, mProject.
Because it assumes the great bulk of the processing burden, and because it will in many
cases be used as a general reprojection tool, we will perform load, beta, and validation
testing on it. Table 5 lists the test processes that will make up individual test suites. Each
test suite will consist of a sequence of test cases that will fully establish the accuracy,
performance and robustness of that component of Montage

The Montage requirements demand that image mosaics can be ordered through web
portals and can be visualized through web browsers. Montage will use existing portals
and services to satisfy these requirements, and such new services and portals as are
developed as part of the NVO project. Testing of data ordering and visualization will be
performed as part of system and acceptance testing of the appropriate deliveries.

The first code improvement milestone, F, will emphasize accuracy on Linux 6.x, which
will be the OS for the Teragrid and one of the commonest platforms on which Montage
will be run. Once the code and algorithms have been validated on Linux, the test results
for a given image collection will make up a template that can be used on other platforms.

Table 5: Identification of Test Suites for Montage and Its Components

Components run through a common executive are identified
 by a common background color

Component Test Processes†
mImgtbl

1 S, VN, E, R2
mProjExec D, F, I,S, P,B, V, N, E,

R2
mProject D, F, P, B,V, E, R2
mAdd D, F, N, E, R2
mOverlaps D, F, S, V, N, E, R2
mDiffExec D, F, I,S, P,B, V, N, E,

R2
mDiff D, F N, E, R2
mFitExec D, F, I,S, P,B, V, N, E,

R2
mFitplane D, F, N, E, R2
mBgExec D, F, I,S, P,B, V, N, E,

R2
mBgModel D, F, N, E, R2
mBackground D, F, N, E, R2

† Key to Test Processes: D= developer; F= functional; I= integration; S= System; P= performance and
stress; B=beta; V=acceptance and validation; N= installation; E= End User Documentation; R=regression

1 mImgtbl has been in operational use at the Infrared Science Archive since 2000. Because it is robust and
well-tested, we will not perform developer and functional testing here, but we will test it as part of
integration, system and acceptance testing. Such updates to mImgtbl as are incorporated into IRSA will be
migrated to Montage: we plan to have only one operational version.

 14

2 When needed after defects have been corrected or after a new system build.

5.2 Entrance and Exit Criteria for Test Suites

For each suite:

Entrance criteria: Collection of documented test cases approved the PI and the QA
officer, committed to CVS. Each test case will include a detailed description of the
expected results, such as technical specifications of the image mosaics output from
Montage, and descriptions of the error messages expected to be generated when testing
failure modes. Test cases will follow the structure given in Section 5.

Exit criteria: A successful test will replicate the expected outcome. Where this criterion is
not met, the Montage team will decide on the response to each defect. Following
correction of defects, appropriate retesting and regression testing will be performed.
Defects not corrected for a particular release will be fully documented in the User
Documentation.

Regression Tests: Regression testing must be performed throughout the project,
following correction of defects and system builds, including builds that will support
incremental releases outside the major milestones. The regression test suite will be built
from the results of the functional, system, integration, performance and installation test
suites. The results will validate the functionality of the modules and their interfaces, the
performance of the system and the fidelity and accuracy of the output mosaics (as
specified in the requirements), and the correct installation of the software.

The regression test suite will consist of test cases successfully completed from functional,
integration, system and performance tests. These tests must fully exercise Montage’s
functionality, robustness, interfaces and performance. The exit criterion for regression
testing is that the output of each test case must be identical in successive test runs, except
in those cases affected by a corrected defect: in these cases, the affects of the bug on the
output must match predictions.

For an incremental release, a complete set of regression tests that thoroughly exercise
Montage must be performed. For corrections to defects during a development cycle, a
partial set of tests may be run. While this will be assessed on a case-by-case basis, the
exit criterion will remain as above.

Documentation Tests: Some special remarks are applicable here. The documentation
will include items such as algorithm descriptions, where a quantifiable test outcome
cannot be specified. The Customer Review Board will review such documentation, and
their explicit approval of the quality of the documentation will be considered as the exit
criterion. Otherwise, documentation testing will be performed as per other tests. For
example, build instructions will be accompanied by a description of the characteristics of
the expected executable images (number, size …). Testing will involve building Montage

 15

according to the instructions set forth in the documentation, and ensuring that the
executable images must have the characteristics described.

5.3 Test Plan Scope and Schedule

Montage will be delivered incrementally between February 2003 and January 2005.
Successive deliveries will alternately emphasize accuracy and improvements in
performance on the one hand, and improvements in portability and the number of image
data sets supported on the other. The matrix in Table 6 summarizes those test suites that
will be performed on each delivery.

Table 6: Scope and Schedule for Montage Testing

Milestone,
Due Date &

Version

Technical
Summary of

Milestone

Platforms
Supported

Data Collections and Scope of
Testing†

F: First Code
Improvement;
2/28/2003;
1.0

Accuracy and
robustness over
performance and
interoperability.

Linux 6.x on
Teragrid, Linux
7.x workstations

2MASS: All test suites (except P and
portals and visualization in S, V)

I: Interoperability
Prototype;
 8/15/2003;
1.x

Use code in F):

Performance
comparison

Order mosaics
through extant
clients

Linux 6.x on
Teragrid.

Linux 7.x

DPOSS: All test suites

2MASS: R, P, portals & visualization in
S, V.

G: Second Code
Improvement;
2/28/2004;
2.0

Performance
improvement on
Teragrid.

Deployment of
cache.

Linux 6.x,
Teragrid.

Linux 7.x

Solaris 2.7/2.8

2MASS, DPOSS:
R,and P on Linux, full test suites on
Solaris
SDSS: Complete test suites on Linux 6.x
(Teragrid), Linux 7.x, Solaris

J: Full
interoperability;
8/15/2004;
2.x

Full
interoperability
with 2MASS,
DPOSS, SDSS data
sets.

Full toolkit for
image
manipulation. .

Linux 6.x,
Teragrid.

Linux 7.x

Solaris 2.7/2.8

AIX

2MASS, DPOSS, SDSS:
R and visualization in S,V for Linux,
Solaris.

Full test series on AIX

 16

K: Customer
Delivery;
1/10/2005;
3.0

Final performance
milestone.

Linux 6.x,
Teragrid.

Linux 7.x

Solaris 2.7, 2.8

AIX

IRIX 6.51

2MASS, DPOSS, SDSS:
R, P all platforms except IRIX 6.5

Full test series on IRIX 6.51

† Key to Test Processes: S= System; P= performance and stress; V=acceptance and validation; N=
installation; R=regression

1 Only as resources permit

6 Test Approach and Methodology

6.1 Drivers and Test Tools

Generally, we will execute test cases by running Montage from the command line. We
anticipate that some parts of the testing will benefit from automation, but we will restrict
drivers to simple Unix scripts.

6.2 Specifications of Test Cases

For each test suite, we will define a series of test cases that will be performed for all
supported platforms. The definitions of the test suites and the test reports will be archived
under CVS, following approval by the PI and the QA officer. All test cases/reports will
have the structure described in Table 7, and will be documented on the Montage project
internal web page. Through the life of the project, the test cases will be run on all
platforms supported by Montage, and results for each platform will be documented as
links from the web page for that test case.

Table 7: Structure of Test Cases

Test Case Item Description
Identifier Unique identifier to reference the item

under test, the platform, the test process,
and the test number e.g. mProjec_F_005
denotes the 5th test case of Functional
testing of mProject.

Purpose The aim of the test, including the name of
the module and/or the feature in the module
under test. Will include references to
product specs or design docs as necessary.

Montage Version; Module Version Version of Montage system; version of

 17

module under test (from CVS)
Test case dependencies Identification of other test cases that may

affect the result of this case & why
Tester Name of tester
Date Date(s) when tests performed
Input Specification All inputs and conditions that are needed to

run the test
Output Specifications Expected Results
Procedure Procedure to follow
Test Conditions Machine, OS etc on which test was run
Pass/Fail criteria Precise description of pass/fail criteria.
Test Results Describe test results vs. what was expected
Pass/Fail Pick one; Bug ID if Fail
Defect Severity Fatal (correct immediately); Serious (must

correct for release); Cosmetic or
Retest Results Results of retest if F; state new module

numbers (if updated).

6.3 Test Case Tracking

We will use a simple web form that will be available on the project internal web site for
tracking the status of each test case. The QA officer will be responsible for determining
the status of the test cases and updating the test case status page.

The page will be organized according to the test processes that must be performed for
each milestone, and will have the structure shown in Table 8.

Table 8: Sample Test Case Tracking

Milestone F: First Code Improvement; Platform: RedHat Linux 7.3
Test Suite/Cases:
tImgTbl_F

Test Date; P/F Bug ID Retest Date P/F

001 10/15/2002; P
002 10/15/2002; F 25, 26 11/30/2002; P
. . .

6.4 Quality Assurance Tools

The QA tools described in this subsection are requisite to the test plan and were described
in [1]. They are repeated here for completeness.

 18

6.4.1 Requirements Traceability Matrix
This matrix will be posted on the project internal web site and will be used to ensure full
requirements coverage. The matrix will be an Excel spreadsheet table with column
entries as in Table 9, with one entry for each requirement with a (fictitious) sample entry

Table 9: Requirements Traceability Matrix

Req.
Spec.
No.

Req.
Statement

S/W
module

Test Spec. Test Case # Verification Mod. Field

10 Support coadditions
through simple
averaging and
medians

Do_co_adds.c Developer,funct
ional,
integration,
acceptance, beta

16,19-22,
34,66-69

Fully verified Version 2.0
requirements
review – added
median co-
adds

etc
etc

The interpretation of the columns is as follows:

 19

6.4.2 Defect Tracking

The project will deploy a defect tracking system to records and track defects reported in
reviews, testing and reported by defects. Defect tracking will take place throughout the
project, beginning with initial design review. The defect tracker will report the following
information:

 Identifier
 Description
 Priority
 Assignee
 Montage version number
 Development Phase (requirements, design, …, user reported)
 Status (Either open or closed)
 Reporter
 Platform (OS, CPU, etc.)
 Submission Date
 Close-Out Date
 Resolution

Column Description Timeline
Requirements
Specifications Number

The requirement paragraph number as
listed in the Requirements
Specification document

initial requirements analysis

Requirement Statement Paraphrase of the actual requirement as
it appears in the Requirements
Specification document

initial requirements analysis

Software Module The module/subroutine that addresses
the requirement

Detailed design phase

Test Spec. The Test plan that contains the test
case/procedure that validates the
requirement. e.g., unit test plan,
Integration test plan, Acceptance test
plan

Test Plan development

Test Case # The test cases that will be run to verify
the requirement

Test Plan development

Verification How well the requirement was verified:
not verified; partially verified; fully
verified

after executing the test procedure

Modification Field Used in case requirement has been
modified in any way throughout the life
of the project. Indicate disposition
(changed / eliminated / replaced), and
authority for modification, e.g.,
eliminated – Requirements review,
10/17/01

Throughout the project as
requirements are modified

 20

 Staff Hours to Resolve Defect

We are currently evaluating a commercial product, TestTrack, offered by Seapine
Software, Inc. We expect to make a decision on a defect tracker by the end of September
2002.

6.4.3 Software testing metrics

The following metrics are applicable to testing, and have been adapted from those
described in [1]. The QA officer will be responsible for generating and publishing the
metrics. As testing proceeds, he or she will generate and update these metrics and
publish them on the internal web page. Following release, the metrics for that version
will be published on the public web page. They will be generated by the QA officer, and
published on the Montage web page for each release.

Software Complexity
• McCabe metric or equivalent for each delivered module
• Changes in this metric for successive releases (except for first code improvement)

Schedule
• Number of FTE equivalents performed to complete the test plan for each milestone (actual vs.

planned)

Software Quality
• Number of defects reported per release in:

Reviews
 Testing
 Operations (reported by users)
 Level of effort to correct each defect
 Length of time the defect was “open”

• Number of defects, ordered by priority, open as function of time.

7 Resources and Responsibilities.

The development of Software test cases and its execution will be led by the Montage
Project Manager and the JPL Line Manager, and will be assisted by the QA officer. None
of these persons will participate in code development. They will be supported by users
who will largely help with the validation of Montage.

Table 10 summarizes the roles and responsibilities of the Montage staff in the designing
and executing the test plan.

 21

Table 10: Test Responsibilities on Montage

Task Pr
oj

ec
t

m
an

ag
em

en
t

D
ev

el
op

er
s

Q
ua

lit
y

A
ss

ur
an

ce

C
us

to
m

er
s

T
ec

h
W

ri
te

r

U
se

rs

Develop Test Cases X
Matrix Test Suites and Test Cases to Deliveries X
Review Test Matrix X
Maintain Requirements Traceability Matrix X
Examine and approve test reports; commit to CVS X
Maintain test tracking matrix X
Evaluate Defect tracker X X X
Organize user validation effort X
S/W metrics maintenance X
Get user buy-in to validation plan X X
Prepare installation and build guides, users guide, document
test validation suite.

 X

Developer testing X
User testing - validation X
End user documentation X
All other testing X
Develop test data sets X X X
Develop validation suite for delivery with code X X
Decisions of fixing reported defects (bug committee) X X
Documentation of open bugs for each milestone in user guide X
Organize beta testing X X
Ensure test machines are available X X

References

[1] “Software Engineering Plan for Montage”. Version 1.0 (May 31, 2002);
http://montage.ipac.caltech.edu/Documentation/MONTAGE_SEP.doc

[2] “Software Design Specification for Montage”. Version 1.0 (June 30, 2002)
http://montage.ipac.caltech.edu/Documentation/Montage_Design.doc

 22

Acronyms

2MASS Two Micron All Sky Survey

AIX Advanced Interaction eXecutive
ANSI American National Standards Institute
ASCII American Standard Code for Information Interchange

CACR Center for Advanced Computing Research

DBMS DataBase Management System
DPOSS Digital Palomar Observatory Sky Survey

FITS Flexible Image Transport System
FTE Full Time Equivalent

GNU Gnu’s Not Unix

HPSS High Performance Storage Server

IPAC Infrared Processing and Analysis Center
IPG Information Power Grid

JPL Jet Propulsion Laboratory

NVO National Virtual Observatory

PC Personal Computer
PI Principal Investigator

SDSC San Diego Supercomputer Center
SDSS Sloan Digital Sky Survey
SGI Silicon Graphics Inc
SRB Storage Resource Broker

TB TeraByte

