Software Design Specification for

MONTAGE

An Astronomical | mage Mosaic Service for the National
Virtual Observatory

Version 2.1 (August 29, 2004): Detailed Design

This Document is based on the template
CxTemp_Softwar eDesignSpecification.doc (Draft X; August 9, 2002),
released by Construx Softwar e (www.constr ux.com)

_—4

| N
AL R

ARL

Linbc

MONTAGE DESIGN REVISION HISTORY

Description of Revision

Date

Add MPI design, MPI flowcharts, revise existing flowcharts.
Move API & return codes to web page; update delivery dates
and version numbers; add design for fast algorithm and new co-
addition algorithm. —Version 2.1

August 29, 2004

Detailed Design: revised to reflect architecture for Montage on
the TeraGrid — Version 2.0

January 13, 2004

Detailed Design: add algorithm description, flow charts,
interface specification, error handling methodol ogy, and all
success and error return codes; revised block diagrams of
Montage design & processflow —Version 1.1

November 18, 2002

Initial Design — Version 1.0

August 9, 2002

Table of Contents

IO 1 0 o (3ot ' o SRR 5
1.1 Purpose Of thiS DOCUMENL.........c.cccueiiieieriesie e see st eee et ae e sreenne e 5
1.2 Schedulefor Delivery of Software Design Specification for Montage................... 5
1.3 SUPPOITING MELEITAIS.cceeieeiecieesie e ste ettt esreeae e sreenee e 6

2. DeSIgN CONSIAEI ALIONSeovieieeriieieeiesiee ettt sttt sseesbeeeesaeesseeneesneenrens 7
2.1 Driversand CONSIIAINTS........cooueriirierisieriesesee et se s besr e be e e 7
2.2 Use Of Open SOUIrCE SOfIWEAIE........cooiiieieerieeie et neens 7
2.3 Portability of MoNtage SOftWare..........cccveeieeieceeie e 8
2.4 SyStem ENVIFONMENT.......coiiiieiiesieie ettt sreesbesee e e nee s 8

3. High-Level Architecture and Computational Algorithms.......c.cccceecvveevieeieneenens 9
3.1 HighLevel Design Of MONTAgE.......ccooiueieirieiiinieseeee et 9
3.2 Computational Algorithmsin MONtage........cccveveveeveeie e 12

3.21 Image Reprojections and Pixel OVerlapccooceevieenenin e 12
3.2.2 Background Modeling and Rectification...........cccceveeveeieseenesce e 15
3.2.3 Coadditions and Weighting of Output Pixel FIUXES...........ccceverivneenierenne. 16
3.3 PalallEliZatiONc.ocuiiieieiieeee s 17
3.4 Montage Workflow Parallelized with Grid TOOISccoceiiriiiiiieeeee 18
AL USEN POMEl ..o 20
3.4.2 ADbstract WOrkflOW SEIVICE.......cooeiiiiiiiecie e s 21
34.3 2MASSIMAZE LISt SEIVICE ...ccveeieeeeete et eee et ee st 23
3.4.4 Grid Scheduling and EXECULION SEIVICEcceverirreenierie e 23
345 User NOtifiCalion SEIVICE.......cociiiiiririeierie e 24
3.4.6 Modificationsfrom Montage VL. 7.1ccccooieiiiriinieneee e 24
3.5 Montage Workflow Parallelized with the Message Passing Interface (MPI)....... 25

4. Detailed Design Of MONTAGE........ccoiiiiiieiieiesee et nee s 26
4.1 Interface SPECITICALIONS........cccveieerieee ettt ne e 26
4.2 Definitions of Montage File FOrmats...........ccooeeiiriiennene e 27

ASCII Table formats & theimages.tbl file........ccocevveeeiceieeeceee e 27
St SRS 27
422 TheTemplatendr file......cccooiiieiiie e 28

4.3 Design of Montage Modules: Flow Charts..........cccccoieeieninenneneeeieeee e 29
431 COr€ MOUUIES.......coeiiiiterieseree e bbbt 29
4.3.2 Flowcharts for Message Passing Interface Modules.............ccooeeiviieniennee. 38
4.4 Error Handling MethodolOgYycccvevveiierieiieseesie e 40

5. Montage Operating Under the NVO Architecture........ccooeveeveneneeceniesee 40

6. Description of Data Formatsand Image Data Collections..........ccccceeeveverivrennne. 42
6.1 Flexible Image Transport System and the World Coordinate System.................. 42
6.2 Image Data CollECLIONS.........c.cceeiieieeieee e 43

B.2.1 2MASS...ceee e ettt na et sre e besreeneeneeneas 43
B.2.2 DPOSS ...t ettt 43
B.2.3 SDISS... ittt et ste e besreeneeneeneas 43
6.3 Disposition of the Image Data CollECtioNS..........ccceveeveeeesecie e 43
B.3. 1 2ZMASS...ce ettt et sre e besreeneeneeneas 43
B.3.2 DPOSS ... oo bbbt 44
B.3.3 SDISS... ettt et sre e besreeneeneeneas 44

7. Montage Design and USE CaSsES.......ccoeeieriinierieeiie et ee e ses 44

REFEIBNCES.......eo ettt e b bt 48
F X 0])Y/ 1 1L TSRS OTRPO 50
(€] 075\ T S 51
Appendix A: Sample FilesUsed With TeraGrid Portalccccooeieeiinineniineens 52
A1l. Sample XML Abstract WOrkflow for M51ccccoveoevieieeieseeseee e 52
A2. Sample ImMage Table........ooe e 57
A3. Sample Projected Image Table.......ccvceeiieeceeee e 57
A4. Sample Corrected Image TabIe ..o 57
AS5. Sample Fit Plane File TabIe........ccveoiiee e 58
A6. Sample Montage Template File.........ooo i 58
A7. Sample Abstract Workflow Service Log File.......ccooooevieiieciieesece e 58

1. Introduction

1.1 Purpose of this Document

This document describes the design of Montage, an astronomical image mosaic service
for the National Virtual Observatory. It will deliver on-demand, science-grade,
astronomical image mosaics that satisfy user-specified parameters of projection,
coordinates, size, rotation and spatial sampling. Science-grade in this context means that
the impact of the removal of terrestrial and instrumental backgrounds on the fidelity of
the data is understood and removed over different spatial scales. The service will deliver
mosaics of images released by the 2 Micron All Sky Survey (2MASS), the Digital
Palomar Sky Survey (DPOSS) and Sloan Digital Sky Survey (SDSS) projects. in
addition, since the service will support all common projections and coordinate systems, it
will therefore be capable of delivering image mosaics from observations with all major
astronomical imaging surveys and CCD imagers on ground-based telescopes

A fully documented, portable version of the software will be publicly available for
running on local clusters and individual workstations. The compute engine will be quite
general and will allow users to build mosaics from their own data. 1n addition, Montage
will run operationaly on the TeraGrid [1][1] . Users will submit requests to Montage
through existing astronomical portals, and visualize and interact with the delivered
mosaics through these same portals.

1.2 Schedulefor Déelivery of Software Design Specification for
Montage

The complete design specification of Montage will contain a description of
design considerations
overall architectural, “high-level” design
how the high-level design satisfies the science requirements and use cases

Low level design, including error handling strategies and algorithms implemented by
the system

This document describes all aspects of the design except the API, which is specified in
the on-line Users Guide.

The complete design specification will be delivered incrementally over several releases
of this document, according to the schedule described in Table 1. The Montage project
aimsto deliver acomplete, initial design specification before the first public release of
the system (February 28, 2003) and will provide updates thereafter for subsequent
releases. We anticipate that the design updates will be incremental and will largely
accommodate customers' requests for functionality.

Table1l: Schedulefor Major Releases of Software Design Specification

of Montage
SDS Actual Montage SDS Contents
Version | Release Date Version
(Scheduled
Release Date)
1.0 6/30/2002 1.0.0 Design considerations
(2/28/2003) Overdl architecture for serial
processing
Application of design to use cases
11 11/18/2002 1.1.0 Design considerations
(2/28/2003) Overal architecture
Application of design to use cases
Interface Specifications
Low level design, incl. algorithms and
error handling strategies
2.X 8/30/2004 2.X Support parallel processing
computing grids (principally the
(2/28/2004) Teragrid), fast reprojection algorithm,
and co-addition by reading image
filesfrom disk
3.0 9/30/2004 3.0.0 Updates to 2.x to support final
(1/10/2005) performance metric |

1.3 Supporting Materials

Montage will be developed according to the style guidelines in the Construx Software
Project Survival Guide Error! Reference source not found..

2. Design Considerations

2.1 Driversand Constraints

The drivers and constraints governing the design of Montage are made clear in the
requirements document [3] and in the Software Engineering Plan [4]. The most important
drivers and constraints are as follows:

Montage will be able to build small mosaics on auser’s Linux laptop and be able to
process many simultaneous, large requests on the TeraGrid. It must therefore be
written to ensure portability, and make use of common tools and libraries that exist on
all widely-used platforms.

Montage must be a general service, capable of generating image mosaics according to
user-specified size, rotation, projection and coordinate system.

Montage must permit exercising the processing steps manually, and must deliver
intermediate products, such as re-projected images, as science productsin their own

right.

Montage must permit, without modification to the reprocessing and co-addition
engines, rectification of background radiation to acommon level, with parameters
derived from rectification algorithms supplied by data providers, and background
rectification from user-supplied parameters.

Montage has strict performance requirements, and must be scaleable. It must deliver
custom mosaics from 2MASS, DPOSS and SDSS with sustained throughput of 30
sguare degrees (e.g. thirty 1 degree x 1 degree mosaics, one 5.4 degrees x 5.4 degrees
mosaic, etc.) per minute on a 1024x400Mhz R12K Processor Origin 3000 or machine
equivalent with a sustained bandwidth to disk of 160 MB/sec.

2.2 Useof Open Source Software

Montage will use asmall set of standard open-source astronomical libraries for reading
Flexible Image Transport System (FITS) image files, performing coordinate system
transformations, and handling image proj ection/de-projection operations. These libraries
are portable and well-tested, and a current version will be delivered with all releases of
Montage. The libraries are:

Library Description Current Release Origin

CFITSIO FITS reader Version 2.420 HEASARC

WCSTools Image projection Version 3.5.2 SAO

boundaries Boundaries around setsof | Version 1.0 IRSA
points on the sky

coord Coordinate Version 1.5 IRSA
transformation

mtbl ASCII table reading Version 3.2 IRSA

pixbounds Boundaries around setsof | Version 1.0 IRSA
points in the xy-plane

svc Process forking and Version 1.5 IRSA
control

two_plane Plane-to-plane Bundled with Spitzer Space
transformations in the nmopex_S9. 5.0 Telescope
tangent plane

2.3 Portability of Montage Software

To ensure maximal portability and use of Montage, it will not use shared memory,
specific DBMS interfaces, or platform-specific libraries, and it will minimize its use of
memory (as long as it does not compromise the quality and range of the algorithm).
Ancillary information, such astables of information on the collection of images that are
being processed, will be captured in simple text filesin column delimited format; these
files can be parsed by any computer.

Montage will be constructed to operate entirely from command-line arguments, using the
ancillary files described above to communicate other information needed to process a
request.

Montage will be developed in ANSI-standard C. It will be guaranteed to compile with
GNU gcc and to build with GNU gmake. Other compilers and IDE’ s will almost
certainly work just as well, though we make no guarantees about testing such and will
only do so as resources permit.

Montage will be built on several UNIX platforms, including but not limited to Solaris,
AlX, and Linux. Itwill betested and run operationally on the TeraGrid.

2.4 System Environment
Montage should run on the following platforms and Operating Systems:

Machine (ON

TeraGrid (Operations) Red Hat Linux 6.2

IBM Blue Horizon AIX 5L

Linux Cluster Red Hat Linux 6.2

IPG SGI 02K, O3K IRIX 6.5.x

Solaris Workstations Solaris 2.7, 2.8

Linux workstations Red Hat Linux 6.2, 7.X
Apple Mac OS X (Darwin 7.4. X)

3. High-Leve Architecture and Computational Algorithms

3.1 High Level Design of Montage

Processing a request for an image mosaic consists of three main steps:

- re-projection of input images to a common spatial scale, coordinate system and World
Coordinate System (WCS) projection;
modeling of background radiation in images to achieve common flux scales and
background levels,
rectification of images to acommon flux scale and background level; and
co-addition of re-projected, background-corrected images into a final mosaic.

To accomplish these requests, Montage will consist of the following independent but
interoperable components, illustrated in the block diagram in Figure 1.

A compute engine that performs all re-projection and co-addition of input.

A background modeling engine that globally minimizes the inter-image differences.
A background rectification engine that removes background and instrumental
radiation from the images.

An image coaddition engine that calculates weighted averages of pixel fluxesin the
final mosaic.

The Montage components can be called separately or in tandem. Figure 2 shows an
overview of the process flow in Montage. Essentialy all requests will call the
reprojection and co-addition engines. These engines will process al the input images,
generate custom images according to the user’s specification of coordinates, sampling
and projection, and co-add the fluxes in the output images. Calls to the background
modeling and rectification engines are made if requested by the user. Background
modeling and rectification involves fitting the differences between overlapping images on
alocal (for small mosaics) or global scale and determining the parameters for smooth
surfaces to be subtracted from each image to bring them to acommon scale. These
parameters can either be determined on the fly or done once and saved in a database for
any future mosaics done with the same images. The advantage of local fitting isthat it
allows variations in the fitting algorithms to deal with special cases and, for small
regions, will probably be more sensitive to local variations than a global fit. The
advantage of global fitting isthat it provides a uniform view of the sky and atested “ best
fit” that can be certified as such by the project. [we might want to mention that we have
only implemented local fitting in Montage 2.1.]

Our design allows us to use both approaches. We will derive and storein arelational
DBMS at least one set of background fit parameters for the whole sky, based on
algorithms supplied by the providers of the image collections, but allowing the user the
option to invoke custom background processing if they think it will provide a better
mosaic for alocal region. SDSC is committed to providing aDBMS for NV O-related
processing, but the choice of engineis TBD.

Figure 1: Design Componentsof Montage—High Level Design.
Montage performsthree principal functionsin generating an image
mosaic, and the components of each areillustrated here. They are
Image reproj ection, background modeling, background rectification,
and image coaddition. labeling on the plot still looksfunny to me

:.E?% =
-~ HE E
= = g i)!
> : giggg o
; gég ER 553
. #E83
9 Egﬁ QI)-) =
- SE% FH :
- e
“ﬂ.r % <)
5? sﬂr-;[[lﬁ“""’;l

- [msely
B
-v-"'—“"
etk
(J
g
et
T

Tl kg
metadits
@ :]-\.

@*

5
=
3
=

AP B
defimit o
=

|~J;J ?

oL

L b
FE—— 353 EE f3F %
| rp—— YT E’%ﬁ B deq !.D%
HAQDD| | e ¢ 5 B HE S

MONTAGE e D S

Reproj ection and Coaddition

mProjExec % E_i
E -
B mAdd l
mProject B =
o
T f M osaic
N —
Image Projection Image Coaddition
Background M odéelling (optional)
mDiffExec mFitExec
—> mBgModel
mDiff } mFitplane }
Overlap Overlap Difference Difference Fitting Background
Analysis Image Generation Modelling
Background Rectification (optional)
—
mBgEXec 8 s
=N
B =
mBackground ‘8 e \8/
} o[
S~

Background Correction

Figure 2: Design Components of Montage - Process Flow Overview.

11

3.2 Computational Algorithmsin Montage

This section describes the innovations in computational algorithms developed to support
the design of Montage.

3.2.1 Image Reprojectionsand Pixel Overlap

Image reprojection involves the redistribution of information from a set of input pixelsto
aset of output pixels. For astronomical data, the input pixels represent the total energy
received from an area on the sky, and it is critical to preserve this information when
redistributed into output pixels. In astronomy, it is also important to preserve the
positional (astrometric) accuracy of the energy distribution, so common techniques such
as adding all the energy from an input pixel to the "nearest” output pixel are inadequate.

Instead, we must redistribute input pixel energy to the output based on the exact overlap
of these pixels, possibly even with a weighting function across the pixels based on the
point spread function for the original instrument. The goal is to create an output image
which is as close as possible to that which would have been created if the sky had been
observed using an instrument with the output image's pixel pattern. We are also
committed to building a system which handles all astronomical projections and
coordinate systems equally well.

3.21.1 A General Reprojection Algorithm

The most common approach to determining pixel overlap isto project the input pixel into
the output pixel Cartesian space. Thisworkswell for some projection transformations
but is difficult for others. One example of a difficult transformation is the Aitoff
projection, commonly used in astronomy, where locations at the edge of an image
correspond to undefined locations in pixel space. For Montage, we have decided instead
to project both input and output pixels onto the celestial sphere. Since all such "forward"
projections are well defined, the rest of the problem reduces to calculating the area of
overlap of two convex polygons on a sphere (with no further consideration of the
projectionsinvolved). Theissue of handling reprojections therefore becomes a problem
of classical spherical trigonometry.

General algorithms exist for determining the overlap of polygonsin Cartesian space [5].
We have modified this approach for use in spherical coordinates to determine the
intersection polygon on the sphere (a convex hull) and applied Girard's Theorem [6],
which gives the area of a spherical triangle based on the interior angles, to calculate the
polygon's area.

Theresult isthat for any two overlapping pixels, we can determine the area of the sky
from the input pixel that contributes energy to the output pixel. This provides not only a
mechanism for accurately distributing input energy to output pixels but, as we shall see, a
natural weighting mechanism when combining overlapping images.

12

Our approach implicitly assumes that the polygon defining a single pixel can be
approximated by the set of great circle segments connecting the pixel's corners. Since
even the largest pixelsin any redlistic image are on the order of a degree across, the non-
linearities along a pixel edge are insignificant. Furthermore, the only effect this would
have would be to the astrometric accuracy of the energy location information and would
amount to avery small fraction (typically lessthat 0.01) of the size of apixel. Tota
energy is still conserved.

The Montage processing scheme is a natural fit with the "drizzle" agorithm developed by
STScl [7]. Simply, that algorithm shrinks each input pixel's size linearly toward its
center (asquare pixel one arcsecond on a side becomes a square pixel afraction of an
arcsecond in size with the same center) before it is reprojected and its flux redistributed
to the output pixels. In Montage, this means simply computing different cornersin the
input linear pixel space; the flux redistribution and appropriate area-based normalization
are handled naturally by the basic Montage algorithms. Thereisadight impact on
processing speed since all four pixel corners must be calculated for al pixels (in the non-
drizzle case there is some saving because pixels share corners). For this reason, "drizzle"
has been implemented as an option in Montage from its inception.

3.21.2 A Fast Reprojection Algorithm

The general reprojection algorithm described above transforms pixel coordinates in the
input image to coordinates on the sky, and then transforms that location to output image
pixel space. Under certain circumstances, this can be replaced by a much faster
algorithm which uses a set of linear equations (though not a linear transform) to
transform directly from input pixel coordinates to output pixel coordinates. This alternate
approach is limited to cases where both the input and output projections are “tangent
plane” (gnomonic, orthographic, etc.), but since these projections are by far the most
common, it is appropriate to treat them as a special case.

This “plane-to-plane” approach is based on a library developed at the Spitzer Science
Center [8]. When both images are tangent plane, the geometry of the system can be
viewed as in Figure 3, where a pair of gnomonic projection planes intersect the
coordinate sphere. A single line connects the center of the sphere, the projected point on
the first plane and the projected point on the second plane. This geometric relationship
results in transformation equations between the two planar coordinate systems that
require no trigonometry or extended polynomial terms. As a consequence, the transform
isafactor of thirty or more faster than using the normal spherical projection formulae.

A bonus to the plane-to-plane approach is that the computation of pixel overlap is much

easier, involving only clipping constraints of the projected input pixel polygon in the
output pixel space.

13

Figure 3: The Principle of Plane-to-plane Reprojection

This approach excludes many commonly-used projections such as “Cartesian” and
“zenithal equidistant,” and is essentially limited to small areas of few square degrees.
Processing of all-sky images, asis almost always the case with projections such as Aitoff,
generally requires the slower plane-to-sky-to-plane approach.

There is, however, a technique that can be used for images of high resolution and
relatively small extent (up to afew degrees on the sky). Rather than use the given image
projection, we can often approximate it with a very high degree of accuracy with a
“distorted” Gnomonic projection. In this case, the pixel locations are “ distorted” by small
distances relative to the plane used in the image projection formulae. A distorted spaceis
one in which the pixel locations are sightly offset from the locations on the plane used by
the projection formulae, as happens when detectors are dightly misshapen. This
distortion is modeled by pixel-space polynomia correction terms which are stored as
parameters in the image FITS header.

While this approach was developed to deal with physical distortions caused by telescope
and instrumental effects, it is applicable to Montage in augmenting the plane-to-plane
reprojection. Over a small, well-behaved region, most projections can be approximated
by a Gnomonic (TAN) projection with small distortions. For instance, in terms of how
pixel coordinates map to sky coordinates, a two-degree “Cartesian” (CAR) projection is
identical to a TAN projection with a fourth-order distortion term to within about a percent
of a pixel width. Figure 4 shows this in exaggerated form for clarity, with the arrows
showing the sense of the distortion.

14

A ——
e ————
™ -+
- o
% = ———
[T —— | — ¥

Figure 4. Representation of a WCS projection as a distorted
Gnomonic (TAN) projection, exaggerated for clarity. The arrows
indicate the sense of the distortions.

In the above example, the curved coordinate grid is an undistorted TAN, and the
rectangular grid is both a CAR and the equivalent distorted TAN. This polynomial
“correction” plus the plane-to-plane transform is still much faster than the normal
reprojection. While this still does not cover all the possible transformations, it does
include all those used for very large data collections.

3.2.2 Background Modeling and Rectification

If several images are to be combined into a mosaic, they must all be projected onto a
common coordinate system (see above) and then any discrepancies in brightness or
background must be removed. Our assumption is that the input images are all calibrated
to an absolute energy scale (i.e. brightnesses are absolute and should not be modified)
and that any discrepancies between the images are due to variations in their background
levelsthat are terrestrial or instrumental in origin.

The Montage background matching algorithm is based on the assumption that terrestrial
and instrumental backgrounds can be described by ssmple functions or surfaces (e.g.
slopes and offsets). Stated more generally, we assume that the "non-sky" background has
very little energy in any but the lowest spatial frequencies. If this not the casg, it is
unlikely that any generalized background matching algorithm will be able distinguish
between "sky" and rapidly varying "background”; background removal will then require
an approach that depends on detailed knowledge of an individual data set.

Given a set of overlapping images, characterization of the overlap differencesiskey to
determining how each image should be adjusted before combining them. We take the
approach of considering each image individually with respect to its neighbors.

Specifically, we determine the areas of overlap between each image and its neighbors,

15

and use the compl ete set of overlap pixelsin aleast-squaresfit to determine how each
image should be adjusted (e.g. what gradient and offset should be added) to bring it
"best" in line with its neighbors.

In practice, we only adjust the image by half this amount, since all the neighbors are also
being analyzed and adjusted and we want to avoid ringing in the algorithm. After doing
thisfor all the images, we iterate (currently for afixed number of times, though we may
later introduce convergence criteria). The final effect isto have subtracted alow-
frequency (currently a gradient/offset) background from each image in such away that
the cumulative image-to-image differences are minimized. To speed the computation
(and minimize memory usage), we approximate the gradient and offset values by a planar
surface fit to the overlap area difference images rather than perform aleast squares fit.

3.2.3 Coadditionsand Weighting of Output Pixel Fluxes

In the reprojection algorithm (described in the pixel overlap discussion above), each input
pixel's energy contribution to an output pixel is added to that pixel, weighted by the sky
area of the overlap. In addition, acumulative sum of these sky area contributionsis kept
for the output pixels (essentially and physically an "area" image). When combining
multiple overlapping images, these areaimages provide a natural weighting function; the
output pixel valueis simply the area-weighted average of the images being combined

Such images are in practice very flat (with only slight slopes due to the image projection)
since the cumulative effect is that each output pixel is covered by the same amount of
input area, regardless of the pattern of coverage. The only real variation occurs at the
edges of the area covered, since there an output pixel may be fractionally covered by
input pixels.

The limitations of available memory have been simply overcome in co-addition by
reading the reprojected images one line at atime from files that reside on disk. Assuming
that a single row of the output file does not fill the memory, the only limitation on file
size is that imposed by the file system. Images of up to 6 GB have thus far been built
with the new software. For each output line, mAdd determines which input files will be
contributing pixel values, and opens only those files. Each contributing pixel vaue is
read from the flux and area coverage files, and the value of each of these pixelsis stored
in an array until all contributing pixels have been read for the corresponding output row.
This array congtitutes a “stack” of input pixel values; a corresponding stack of area
coverage valuesis also preserved. The contents of the output row are then calculated one
output pixel (i.e., oneinput stack) at atime, by averaging the flux values from the stack.

Different algorithms to perform this average can be trivially inserted at this point in the
program. Version 2x of Montage supports mean and median co-addition, with or
without weighting by area. The mean agorithm (default) accumulates flux values
contributing to each output pixel, and then scales them by the total area coverage for that
pixel. The median algorithm ignores any pixels whose area coverage falls below a

16

specific threshold, and then calculates the median flux value from the remainder of the
stack.

If there are no area files, then the algorithm gives equal weight to all pixels. This is
valuable for science data sets where the images are already projected into the same pixel
space (e.g., MSX). An obvious extension of the algorithm is to support outlier rejection,
and thisis planned for afuture release as an enhancement.

3.3 Paralldization

Although Montage 1.7.1 was intended to run on a single processor, the grid portal of
Montage exploits the parallelization inherent in the processing flow. The basic Montage
scenario is to reproject each of the input images to a common output specification
(producing reprojected image/area files), analyze the background by determining the
overlap pairs, calculate and fit the difference images, and model the background
corrections, subtract this model from the reprojected images, and finally perform a
weighted coaddition to generate the final mosaic.

The only place in this scenario where there is more than pairwise interaction between the
images is the background modeling. All the other steps can easily be parallelized across
multiple processing threads or even multiple machines.

The reprojection of each image takes by far the majority of the processing time; the
reprojection can be performed independently for each image, even though each image
uses the same output area definition. In fact, given the area weighting approach we use,
the reprojection of an individual image could be parallelized across multiple threads
through asimple tiling. Similarly, once the image/image overlaps are identified (a fast
process) the difference image processing can be spread out in the same way.

While the final coaddition nominally feeds into a single output memory array, it too can
be parallelized by tiling (the output space), though thisis rarely necessary as the
coaddition step is very fast.

This leaves only the background modeling as alinear process. While this cannot be
subdivided along the lines of the other steps, it would be feasible to parallelize thisin a
more complex way (e.g. blocking the images into regional groups and using the Message
Passing Interface to manage the intergroup cross-talk). However, this component is
unlikely to ever be performance-critical, so thiswill probably not be necessary.

We have currently parallelized Montage using two distinct paths. First, we break down
the processing flow into its components, and use Grid tools to run those components on a
generic Grid. Second, we parallelize the executives to spawn their worker processors on
aparalel machine, and additionally parallelize the co-addition component of Montage
(mAdd), in both cases using MPI as the mechanism of parallelization. The next two
sections of this document discuss these two paths

17

3.4 Montage Workflow Parallelized with Grid Tools

Montage is a portable toolkit that processesimages serially or in paralldl; it is designed so
it can run on any parallel environment, including aLinux cluster or a“true” grid.
Montage was designed with three needs in mind: (1) portability; (2) flexibility to the user;
(3) adaptability to any processing environment. A computational Grid can take many
different formsincluding a collection of supercomputers, cluster computers, or a pool of
workstations connected by a network. This section describes the design of one
implementation of agrid portal for Montage. Thiswork isin fulfillment of Milestone |
[9]. Thismilestone calls for a prototype architecture that accepts requests for a custom
2MASS image mosaic through aweb portal, processes the requests on the TeraGrid
(described below), and returns the image mosaic for visualization and analysis.

The TeraGrid web site [1] describes the TeraGrid as follows:

TeraGrid is a multi-year effort to build and deploy the world's largest,
fastest, distributed infrastructure for open scientific research. When
completed, the TeraGrid will include 20 teraflops of computing power
distributed at five sites, facilities capable of managing and storing
nearly 1 petabyte of data, high-resolution visualization environments,
and toolkits for grid computing. These components will be tightly
integrated and connected through a network that will operate at 40
gigabits per second—the fastest research network on the planet.

The Montage TeraGrid porta is using these high performance resources to construct
image mosaics. Users of the portal need only have a desktop computer running any
standard web browser.

The Montage TeraGrid service accepts requests from two portals, one at JPL and one at
IS, underpinned by a common, distributed architecture. Figures 3 and 4 show this
common architecture. First we describe the JPL portal, shown in Figure 3. Thisportal isa
prototype of one we will ultimately deploy for astronomers, who will submit mosaic
requests through a simple web form that inputs parameters describing the mosaic
(location on the sky, size, coordinate system, projection, etc). A service at JPL/Caltechis
contacted to generate an abstract workflow, which specifies the processing jobs to be
executed, input, output, and intermediate files to be read or written during the processing,
and dependencies between thejobs. A 2MASS image list service at IPAC/Caltech is
contacted to generate alist of the 2MASS images required to fulfill the mosaic request.
The abstract workflow is passed to a service at the Information Sciences Institute (1S1),
University of Southern California, which runs software called Pegasus [10] to schedule
the workflow on the TeraGrid. The resulting “concrete workflow” includes information
about specific file locations on the grid and specific grid computers to be used for the
processing. The workflow is then executed on the remote TeraGrid clusters using
Condor DAGMan. DAGMan is a scheduler that submits jobs to Condor in an order
specified by the concrete workflow. Condor queues the jobs for execution on the

18

Region Name, Degrees
Pegasus
m6GridExec | 6rid Scheduling Concrete Workflow
JPL| User Portal beract | and Execution IsI
Workflow Service Condor DAGMAN
A
. Abstract AGM
mDAGFiles Worktiow DAGMan |
vy | /g [
T — Tera6rid Clusters
strac .
Computational
JPL| Workflow o 1
Service sDhsc
Al]
m2MAssList| | mNotify | }
A 4 A 4 : NCSA
2MASS User ; :
IPAC| Image List IPAC| Notification S s (=
Service Service
ISsI
Condor Pool

Figure 3. Thedistributed architecture of the Montage TeraGrid Portal.

TeraGrid. More information on Condor and DAGMan can be found on the Condor web
site[11]. Thelast step in the mosaic processing is to contact a user notification service at
|PAC/Caltech, which currently simply sends an email to the user with the URL of the
Montage output.

The Montage grid portal is comprised of the following five main components, each
having a client and server code:

User Portd

Abstract Workflow Service

2MASS Image List Service

Grid Scheduling and Execution Service
User Notification Service

agrwbdPE

The second portal is the Pegasus portal at 1Sl simply takes the place of the User Portal
and the User Notification Service. This portal provides complete diagnostic and status
information on the processing, and returns all intermediate products. Astronomers simply
wishing to receive amosaic would find the JPL portal more useful.

19

Region Name, Degrees
Pegasus
6rid Scheduling Concrete Workflow
Pegasus Portal | and Execution |ISI
Service Condor DAGMAN
mDAGFiles
Abstract DAGMan
Workflow Y =
Aot Terabrid Clusters
strac .
Computational
JPL Workflow pGri d
Service sDhsc
AI
m2MASSList|l | {
A 4
NCSA
User
2MASS Notification
IPAC Image List | O\ |rttmmmoeosofmeotooooooooopes
Service
ISI
Condor Pool

Figure4. The preliminary design of the Montage TeraGrid Portal usesthe
Pegasus portal for user input and notification.

3.4.1 User Portal

The client code for the user portal is the ubiquitous web browser. Usersfill out asimple
web form with parameters that describe the mosaic to be constructed, including an object
name or location, mosaic size, coordinate system, projection, and spatial sampling.

Figure 5 shows a screen capture of the web form interface [12]. The datain the web form
are submitted to the CGI program using the HTTP POST method.

The server side of the user portal includes two main codes, both implemented as Perl
scripts: mont age- cgi and nont aged. Thenont age- cgi programisaCGlI script
that is run by the Apache web server after the user presses the “ Submit” button on the
web form. This CGI script checks for validity of the request parameters, and stores the
validated requeststo disk for later processing. Thenont aged program has no direct
connection to the web server and runs continuously as a daemon to process incoming
mosaic requests. The processing for arequest is done in two main steps:

1. Cadl the abstract workflow service client code

2. Cadl the grid scheduling and execution service client code and pass to it the output
from the abstract workflow service client code

20

3.4.2 Abstract Workflow Service

The client code for the abstract workflow service is mDAGFiles, acompiled ANSI C
code, called with the following usage syntax:

nDAGFi | es object|l ocation size suffix zipfile

The input arguments are an object name or location on the sky (which must be specified
as asingle argument string), a mosaic size, afilename suffix, and an output zip archive
filename. These input parameters are sent to the abstract workflow server using the
HTTP POST method.

The server isa CGlI perl script called nph- ndag- cgi , which creates a number of files,

B T T

Tpmgnd Demo

M on tage Portal i
AsrmnonmanosmLsf

Welcome to the Montage Teragrid Demal

Enter your email address:

Select a dataset: 2MASS 2IDR H Band |-%]

Enter a mosaic size in degrees:
Enter a center longitude (right ascension) in degrees:
Enter a center latitude (declination) in degrees:

Enter a sampling in arc seconds:

Select a coordinate system: 12000 Equatorial |]

Select a projection: ! TAN: Gnomonic = Tangent Plane |--3-]
[SUBMIT | [RESET)

Please verify that your email address is correctly entered, since that is how you will be notified where and when to download your mosaic.

Helpful Links:

To get a list of files that owerlap a certain region: yourSky Archive Database Query tool.

Te find the coordinates of a specific cbject: IRSA Coordinate Lookup

To download 2MASS 2nd Release Quicklook Images: IRSA 2MASS Image Services

Te view your resulting image mosaic, you may use any FITS image viewer, such as OASIS or SADImage DS&.

Please send any questions, bug reports, comments or suggestions to Montage portal contact.

For more information on Montage, go to our official web site at http://montage.ipac.caltech.edu.

e

Figure5. Montage grid portal web form interface.

21

packs them into a zip archive file, and sends the zip file back to the calling client. The
following files are included in the zip archive, with the specified filename if thesuf f i x
argument to TDAGFI | es isspecifiedas“ SUF” (Appendices A-G give samplefiles
for asmall mosaic of M51 built from just two images):

1. adag_SUF. xm : The abstract workflow as a directed acyclic graph (DAG) in
XML; specifiesthe jobs and files to be encountered during the mosaic processing,
and the dependencies between the jobs (see example in Appendix A1)

2. i mages_SUF. xml : A table containing filenames and other attributes associated
with the images needed to construct the mosaic (see examplein Appendix A2)

3. pi mages_SUF. xm : A table containing the filenames to be used for the images
that have been reprojected by mPr oj ect (see example in Appendix A3)

4. ci mages_SUF. xnl : A table containing the filenames to be used for the images
that have been background corrected by nBackgr ound (seeexamplein
Appendix A4)

5 fit_list_SUF.tDbl:A table containing the filenames output by nFi t pl ane
for the difference image fit plane parameters (see example in Appendix A5)

6. tenpl at e_SUF. hdr : Montage template header file describing output mosaic
(see examplein Appendix A6)

7. 1 og_SUF. t xt : A log file with time stamps for each part of the processing (see
examplein Appendix A7).

Final Mosaic
e @ >

et N
lA\. Za

@ mBackground mBackground mBackground
Dl

ax+by+c,=0
X +by +c,=0
aX+bgy+c;=0

mBgModel

mFitplane D,, mFitplane D,

dx+ey+f=0

I
B

dx+ey+f=0

Figure 6. Example abstract wor kflow.

22

All of these files are required by the Grid Scheduling and Execution Service, described
below). The abstract workflow inadag_SUF. xm specifies the filenames to be
encountered and jobs to be run during the mosaic processing, and dependencies between
jobs, which dictates which jobs can be run in parallel. A pictorial representation of an
abstract workflow for a mosaic with three input imagesis shown in Figure 6. The

i mges_SUF. xm fileis created by querying the 2MASS Image List Service,
described below. The pi mages_SUF. xml and ci nages_SUF. xm arerequired as
input to the mBgMbdel and mAdd programs, respectively, and are created by simple
text manipulation of thei mages_SUF. xml file. Thefit _|ist_SUF. tDbl fileis
required asinput to mConcat Fi t for merging of the individual fit plane filesinto one
filerequired by nBghodel .

343 2MASSImagelist Service

The 2MASS Image List Serviceis accessed viaa client code called nR MASSLI st
which is called with the following user syntax:

NM2MASSLi st obj ect| | ocation size outfile

The input arguments are an object name or location on the sky (which must be specified
as asingle argument string), amosaic size in degrees, and an output file name. The
2MASS images that intersect the specified location on the sky arereturned inout fil e
in atable, with columns that include the filenames and other attributes associated with the
images.

3.4.4 Grid Scheduling and Execution Service

The Grid Scheduling and Execution Service istriggered using asimple client code called
nG i dExec, with the following calling syntax:

n& i dExec zipfile

The input argument, zi pf i | e, isthe zip archive generated with the Abstract Workflow
Service, described above.

On the server side, the user is authenticated on the Grid, and the work isfirst scheduled
on the Grid using a program called Pegasus, and then executed using Condor DAGMan.

Pegasus is a workflow management system designed to map abstract workflows onto the
Grid resources to produce concrete (executable) workflows. Pegasus consults various
Grid information services, such as the Globus Monitoring and Discovery Service (MDS),
the Globus Replica Location Service (RLS), the Metadata Catalog Service (MCS), and
the Transformation Catalog to determine the available resources and data. Pegasus
reduces the abstract workflow based on the available data. For example, if intermediate
workflow products are registered in the RLS, Pegasus does not perform the
transformations necessary to produce these products. The executable workflow
generated by Pegasus identifies the resources where the computation will take place, the

23

data movement for staging data in and out of the computation, and registers the newly
derived data productsin the RLS and MCS.

Users are authenticated on the TeraGrid using their Grid security credentials. The user
first needs to save their proxy credential in the MyProxy server. MyProxy isacredentia
repository for the Grid that allows atrusted server (like our Grid Scheduling and
Execution Service) to access grid credentials on the user’s behalf. This alowsthese
credentials to be retrieved by the portal using the user’ s username and password. Once
authentication is completed, Pegasus schedules the M ontage workflow onto the TeraGrid
or other clusters managed by PBS and Condor. The workflow is then submitted to
Condor DAGMan for execution. Upon completion, the final mosaic is delivered to a
user-specified location and the User Notification Service, described below, is contacted.

3.45 User Notification Service

Thelast step in the grid processing is to notify the user with the URL where the mosaic
may be downloaded. This notification is done by aremote user notification service at
Caltech IPAC so that a new notification mechanism can be used later without having to
modify the Grid Scheduling and Execution Service. Currently the user notification is
done with asimple email, but alater version will use the Request Object Management
Environment (ROME), being developed separately for the Nationa Virtual Observatory.
ROME will extend our portal with more sophisticated job monitoring, query and
notification capabilities.

The User Notification Service is accessed with asimply client code, mMNot i f y, with the
following usage syntax:

mMNoti fy joblD userlD resultsURL

3.4.6 Maodificationsfrom Montage v1.7.1

The Montage Grid portal implementation required adding a number of extra codes that
were not included in the first release and modifying the usage syntax for a number of the
codes. The usage syntax modifications were required because Pegasus determines some
dependencies by direct filename matching. Every Montage module had to output at |east
one file as output to signal completion. Some of the Montage modules had an optional
statusargument (- s st at us) added for this purpose. Also, because of the way
dependencies are handled by Pegasus, if module 2 depends on module 1, module 1 had to
output afile that was read by module 2. These changes are summarized here:

1. Added nDAGFI | es client program to access the Abstract Workflow Service:
nDAGFi | es object|l ocation size suffix zipfile
2. Added m2MASSLI st client program to access the 2MASS Image List Service:

NM2MASSLi st obj ect|location size outfile

24

3. Added nzr i dExec client program to access the Grid Scheduling and Execution

5.

Service:
n& i dExec zipfile

Added nDAGTDbI s program to take an image list from "R MASSLi st and the
Montage template header file and produce two additional image lists, one for the
projected image files and one for the background corrected image files:

nDAGTbl s [-d][—s status] inmages.tbl hdr.tenplate
proj ected.tbl corrected.tbl

Added mConcat Fi t program to concatenate the output from multiple

nFi t pl ane jobs. This program (not shown for ssmplicity on the archiecture
diagrams) was needed because on the Grid, each nFi t pl ane job could be run
on adifferent cluster pool. ThenBgModel code requiresthe fit plane parameters
inasinglefileso mConcat Fi t isused to concatenate the individual mFitplane
output filesinto asingle file for mBgMbdel . The calling syntax is as follows:

nConcatFit [-d][-s status] statfiles.tbl fits.tbl statdir

6.

Changed nFi t pl ane calling syntax to store the output in afile rather than
sending it to stdout. The statusfile (specified with—s out fi | e) isused to
store the output. The new calling syntax is:

nFitplane [-b border] [-d level] [-s outfile] in.fits

Changed mBackgr ound calling syntax to read the correction plane parameters
from afile rather than from the command line. The old calling syntax had the
plane parameters on the command lineas A, B, C. Thesearereplaced by two
parameters. the image table output by nDAGTDbI s, and asinglefile containing a
table of the correction parameters for each image in the image list. It is assumed
that both of these tables include a column with the file number and these file
numbers have a correspondance across the two tables. The new calling syntax is.

nBackground [-t] [-d level] in.fits out.fits inages.tbl

corrfile.thl

3.5 Montage Workflow Parallelized with the M essage Passing
Interface (MPI)

The parall€elization of Montage with MPI isfairly simple, asit just involves changing the
four executives shown in Figure 2 (mProjExec, mDiffExec, mFitExec, and mBgEXxec)
and mAdd.

25

The executives clearly could be considered the mastersin a master-worker paradigm, and
the MPI parallélization follows this strategy. All paralel processes run through all of the
code of the executives, with the exception that in the main loop where the workers are
run, each process only spawns on each Nth worker, where N is the number of MPI
processes. For example, if mProjExecMPI isrun as four processes, the process with rank
0 calls mProject for thefirst, fifth, ninth, etc. images that need to be processed. The
process with rank 1 calls mProject for the second, sixth, tenth, etc. images, and so on.
Each processor independently keeps track of the counts of its successes and failures. At
the end of the processing, global sum reductions are used to calculate the total statistics,
which are printed out by the process with rank 0. Finally, for the two executives that
write out unified status files (mProjExec and mFitExec) another change is made so that
each processor writes out its statusto alocal file, and when the processes are done,
process 0 open the final status file, and reads from each of the temporary filesin turn, in
each case reading then writing all the lines to the final statusfile, then deleting the
temporary statusfile.

mMAdd has been parallelized with a slight different strategy. This component builds and
writes the final mosaic to disk, oneline at atime. The parallel version of mAdd operates
similarly to the executives, where al processes do all of the work through the main loop.
In that loop, each processor is assigned a range of lines to work on, and it only completes
the main loop for linesin that range. In this case, for efficiency, the first processis
responsible for the first 1/N lines, the second for the next 1/N, etc, rather than the round-
robin distribution used for the executives.

The second set of flowcharts (section 4.3.2) shows these modifications.

This method of parallelization requires that al processes have accessto asinglefile
system, which is the case on individual TeraGrid clusters, aswell as most parallel
machines. This could not be used to run Montage on two independent clusters.
However, this version of the parallel Montage is very similar to the sequential version.
Where a user has a script designed to run a set of Montage processing, the only changes
that need to be made to run the parallel Montage is to run the executives and mAdd
through MPI. With the MPICH implementation of MPI, thisinvolves changing the

commands from:
mvbdul e fl ags&ar gunents

to:
npi run —np nunber - of - processes pat h/ nmvbdul e fl ags&argunents

4. Detailed Design of Montage

4.1 Interface Specifications

Detailed information on running Montage, aswell asafull API for each of its
components, can be found on the project website [13][13].

26

4.2 Definitions of Montage File Formats

421 ASCII Tableformats& theimages.tbl file

The Montage modules read and generate column-delimited flat ASCII table files. One of
thesefiles, referred to in the calling syntax as “images.tbl”, is worth special discussion
because it contains metadata describing the geometry on the sky of a set of image files
(i.e. FITS header WCS keyword values). It is generated by mimgtbl and used by severad
other programs.

Montage uses a simple table reading library which looks for datain an ASCII file having
a header with column names delimited by "[* characters and data records aligned in these
columns.

Image metadata tables must contain the geometric information for each FITS image plus
a counter and a pointer to the FITS file (In the sample file below, nsand nl are used in
place of NAXIS1 and NAXIS2 to save space):

\datatype = fitshdr
lentr] ra | dec | ns| nl|ctypel|ctype2| crpixl| crpix2| crval | crva2 | cdeltl | cdelt2 | crota2 | epoch
| fname |
|int | double | double |int]int| char | char | double| double| double | double | double | double | double |
doubl e char

0 265.1229433 -29.5911740 512 1024 RA---SIN DEC--SIN 256.50 512.50 265.1227836 -29.5910351 -2.7778e-
04 2.7778e-04 0.0011373 2000.00 ./2mass-atlas-980702s-j0830021.fits

1 265.1229367 -29.3217296 512 1024 RA---SIN DEC--SIN 25650 51250 265.1227774 -29.3215907 -2.7778e-
04 2.7778e-04 0.0011343 2000.00 ./2mass-atlas-980702s-j0830033.fits

2 265.1229302 -29.0522851 512 1024 RA---SIN DEC--SIN 256.50 512.50 265.1227713 -29.0521462 -2.7778e-
04 2.7778e-04 0.0011313 2000.00 ./2mass-atlas-980702s-j0830044 fits

Thefirst linein thefile is a parameter used by visualization software and can be treated
as acomment in this context.

Key totherequired columnsin the images.tbl file

Users may specify additional columns or keywords/comments above the header.
Dimensions 1 and 2 refer to axes 1 and 2 of a two-dimensional image.

Column Definition FITS
standard?
cntr A unique counter (row number) N

ctypel, ctype?2 | The coordinate system (the first four characters) and WCS map projection | Y
(last three characters) for dimensions 1 and 2

equinox Precessional year associated with the coordinate system Y
naxisl, naxis2 | The size of theimage in pixelsfor dimensions 1 and 2 Y

crvall, crval2 | The coordinates of areference location on the sky (often at the center of Y
the image) for dimensions 1 and 2

crpixl, crpix2 | The pixel coordinates of the reference location (can be fractional andcan | Y
be off the image) for dimensions 1 and 2

27

cdeltl, cdelt2 | The pixel scale (in degrees on the sky per pixel) at the reference location | Y
for dimensions 1 and 2

crota2 The rotation angle from the "up" direction to the Y
celestial pole

hdu The FITS extention number N

fname The path to the original FITSfile N

4.2.2 TheTemplatehdr file

Several Montage modules rely on atemplate for the output header, referred to in the
calling syntax as “template.hdr,” which is ssmply atext file containing one FITS header
card per line. It looks like aFITS header, though with newlines after every card and with
the trailing blanks on each line removed. It can be generated by hand or created by
nmvakeHdr to match an images.thl file.

Any valid FITS header (with WCS information) is acceptable. The example below isfor
a Gnomonic-projection image, 3000x3000 pixels (1x1 degree) centered at 265.91334 -
29.3577 Equatorial J2000.

SI MPLE = T/
BITPI X = -64 /
NAXIS = 2/
NAXI S1 = 3000 /
NAXI S2 = 3000 /
CDELT1 = - 3. 333333E-4 /
CDELT2 = 3. 333333E-4 /
CRPI X1 = 1500. 5 /
CRPI X2 = 1500. 5 /
CTYPE1 = 'RA---TAN /
CTYPE2 = 'DEC -TAN /
CRVAL1 = 265.91334 /
CRVALZ2 = -29.35778 /
CROTA? = 0 |/

28

4.3 Design of Montage Modules: Flow Charts

431 CoreModules
ml mgtbl

(mimgtbl)

\

Read command
line parameters.

<]

Find an input image
in the specified
data directory.

\

Extract geometry
information from
image header.

Last No |

image?

Yes

End

mProjExec

Y

Read command
ine parameters.

Y

Get input image
info.

Y

call mProject

Last
image?

‘Yes

End

29

No

mProject!

trProjectPF

mPr oject/mProjectPP

Read input FITS
mage.

Y

Determine output

boanding box for
this input image.

Initialize boffers for
ontput pixels and

Last row of

Project input pizels
to output space.

Fead arow of
input data.

Y

Preel = First pixel

in current input rowr

inpat data?

Przel = Haxt pixel

4

) Mo
Dirizzle?

Project four
"drizzled" cormers
of ourrent poxel.

h §

Dietermmine overlap

Project four cormers
of murrent pinel.

area for each cutput (=
pixel

h §

Aromrnalate fha baced

m current mpat rowe

o

Last pixel in
ourrent o

ary oerlap ares for eack
oazpatt pisel.

mProject and mProjectPF have the same structure but use different reprojection libraries. mProject projects
pizel corners from both input and output images onto the sky and computes overlap their using spherical
trigonometry. It is therefore completely general (fe. it can handle all projections) but is fairly slow.
mProjectPF works in the output pizel coordinate space and uses a fast plane-to-plane reprojection library
developed at the Spitzer Science Center. Howewer, this library is limnited to a few tangent plane projections
(TAM, 3IN, ZE&, TG, ARCY. Other Montage modules extend this somewhat by allowing the use of
alternate TAMN headers with distortion parameters to be used to mimic cerfain other projections (e g CAR).

30

m TAH T

Fead cotrnand
e parameters

Fead target dhage
header template

Y

MTANHdr

) J

Populste a set of kast-cquates
tatric es (for distortion paTatieter
ectih atinn] ueihg diff etences bebaeen
pielloc ation of the same slge
positione for aTepreserdatine grid of
pixels usiiE target and distorted T4H
WES ranef orine

A

Creste TAH header (arith distortion
paraneters all setto 07 as Tough
analog of tanphite

Sokre kact cqiares atrices for
distortion paratheters (achia Iy
ApEroddnate corrections chce thic ica

Tuotn-Lie aT systein)

) §

DeteTimite mairronn Tetnaiby eITor
nusitE a (Fier) grid of represertatiee

pinels

Write ot akernate ditorted TAH
header teanplate

31

M

tmfucdd

Y

Fead command
line pararneters

Y

Get output
M0SaIC SPecs

Y

Initialize output
FITS itmage

Y

mAdd

Avrerage each pixel |
-

in output row

Y

Write output row to
output FITS image

Feached last
output row'’

Start building |
next output row |

Dpen nest

> overlapping
inpt irnage

Y

Read row from input
tnage that owerlaps
thiz output row

Y

Add pizelfarea
values to output
row stackes

Dioes next row of
this imput roage
ovetlap ontpt?

Close it
itrage

g

Ilore mput

Yes

Itiages overlap
this output row?

32

mOverlaps

mOverlaps

Y

Read command
line parameters.

Y

Read an input
image, A.

(

\

Read an input
image, B.

Left edge of
A intersects
B?

Record "A
intersects B" into
output table.

A

Top edge of
A intersects
B?

Bottom edge
of A intersects
B?

Yes

33

mDiff

mDiff

\

Read command
line parameters.

\

Determine region of
overlap between the
two input images.

\

Cdlculate difference]
image.

i

et pixels outside
region of overlap to
0.

\

Normalize image data
based on total area
added to each pixel.

\

Create and write
difference image as
FIT Sfile.

End

34

mDiffExec

mDiff Exec

Y

Read command
line parameters.

(\

\

Read overlap
pair, A|B

i

Cdl mDiff (A,B)

mFitPlane

(mFitPlane)

\

Read command
line parameters.

Read image

l

Least squares fit a
plane through image.

End

35

mFitExec

1 mFitExec)

Y

Read command
line parameters.

<
s

Y

Get an overlap
differences file.

l

Cdl mFitPlane

Last
differences
file?

No

Yes

End

mBgM odel

\

mBgM odel

Read command
line parameters.

\

Set N to congtant
number of iterationsto
find least squares
solution

\

\

Read image
information.

Cdculae best set of
correction planes for
each image in least
sguares sense.

i

Read difference
fit information.

\

Determine
neighbors for each

image.

\

Determine centers

for each image.

\

Apply correction
planes to each
image.

\

Decrement N

Yes
N>0

No

End

36

<

mBackground

mBackground

Y

Read command
line parameters.

Read input
image.

i

Remove background
= AX+By+C from each
pixel (x,y).

Y

Create and write
output FITSimage

End

mBgExec

(mBgExec)

Y

Read command
line parameters.

Y

Get input image
info.

Y

Get background
correction info.

Y

Cdl
mBackground

37

4.3.2 Flowchartsfor Message Passing I nterface Modules

mDiffExec MPI

Fead averlap
pair, AR

Dioez this patr
belong to thiz
MPI process (in a
ronnd-robin sense]?

Call mDiff(£.B),
update counts.

Perfortn global sums of
local counts to find global
couts.

38

mProjExec MPI

mProjEsxec

Read command
line pararrneters.

Y

Get mput image
info.

Dioes this image
belong to this MPI
process (na
round-robin sense]y

rall mProject, write
onatpatt to stabae file,
update conmte.

|
==

Last Ma
mage?

Yes

Perform global sams of local
counts to find global counts, rank
0 WPT process copies all lines foom
then deletes tmp statns Hles.

tmAdd

h §

Fead command
line paratneters

h §

Get output
trosaic specs

h §

Initialize output
FITS ttnage

¥

mAdd MPI

Average each pisel

it output row

v

Write output row to
output FITS itmage

Mo Feached last

output row?

Start bhuilding
nesxt output row

A A

it itnage

| owetlapping

Does this output
rowr belong to this
MFI process (in a
block sense]?

h §

Fead row from input
itnage that overlaps
thiz output row

h §

Add pixelfarea
values to output
row stacls

Dioes next row of
this input irnage
orvetlap ontput?

Cloze it
itnage

™

Ilore inpt

Yes

images ovetlap
this ocutput row?

39

4.4 Error Handling M ethodol ogy

Montage employs the error handling methodology used by the Infrared Science Archive
(IRSA), which usesa‘svc’ library to fire up external processes as services, to send
commands and receive structured responses, and to parse those responses to extract
keyword = value pairs or the value of a particular keyword [14][14]. The on-line API
includes a complete list of return codes for each module.

5. Montage Operating Under the NVO Architecture

Montage will run operationally on the Teragrid, a high performance computational grid
provided by the NSF Partnership for Advanced Computational Infrastructure. The
Teragrid provides aggregate computational power on the order of 10 Teraflops, aggregate
disk cache on the order of 800 TB and archival storage capacity of 6 Petabytes. The
details of how NV O compliant processes will be authenticated and fulfilled under the
Teragrid are under development, but will follow the grid paradigm, where data needed
for the request are obtained from the most convenient place, and computing is done on
any available platform where the request can be authenticated.

A request to Montage must be satisfied transparently: users will only be aware that they
are reguesting an image mosaic according to their specification of position, size,
projection etc. They will not be aware of where the request is performed, or if theimage
can be delivered or subset from a cached file. Figure 7 shows how a request to Montage
will be handled when the architecture is fully deployed. The request is passed from the
client to the Request Object Management Environment (ROME).

Broadly speaking, ROME is simply lightweight middleware, built with e-business
Enterprise Java Bean (EJB) technology, which handles requests, responds to messages
and manages pools of requests in a fault tolerant fashion [15]. A processing request to
Montage will be accepted by ROME, which will register the request in the database and
then send it for processing on the Teragrid. The job will be built on the Teragrid with
standard Grid technol ogies such as the Globus, an Open Source toolkit that handles the
construction and management of Grid processes, security etc.

Part of the request may already be satisfied in cached image mosaics. The cache will
actually be part of a data management system that subsets files and constructs new
mosaics from subsets, as needed. Montage will therefore search through a catal og of
cached images and will satisfy such parts of the request as it can from the cached images.
If cached files cannot fill the request, processing on the Teragrid will fill it.

40

Clients
Browser Custom
ROME Forms Clients
| nter action
Request \ e
M anagement R O M E

2 GRID
Client
Survey . .
Metadata Application
Web Services
MONTAGE Image
Processing Reprojection 1
Modules
== Background
1 Modelling

Image Cache
and
Catalog

~ A

Figure7: Montage Integrated in the NVO

41

Aninterpreter (part of grid resources such as Globus) accepts the XML request from
ROME, and trangdlates it into a suitable computational graph (directed acyclical graph,
DAG) that specifies the computations that are needed and what data are needed. The
DAG represents the sequence of computations needed to construct the mosaic from the
input data. Montage will also perform a spatial search on the image collection metadata
to find those files needed to fill the request. The data themselves will reside on high-
quality disks, with high throughput 1/O to the Teragrid processors that will be used by
NV O services.

The result of the processing will be conveyed to the user through ROME. The user will
receive a message that the data are available for pick-up until adeletion date. If the
request was time intensive, the user may have logged off the portal and decided to wait
for email notification. If the request could not be processed, ROME will be able to restart
the job on the user’ s behalf. If only some intermediate products could be processed
before the server failed, ROME will rerun the job, but find the intermediate products and
use them asinputs. Many other partial processing examples can be handled easily within
ROME.

6. Description of Data Formats and | mage Data Collections

6.1 Flexible Image Transport System and the World Coordinate System

Montage will support only input and output files containing two-dimensional images that
adhere to the definition of the Flexible Image Transport System (FITS) standard. FITSis
the format adopted by the astronomical community for data interchange and archival

storage [16][16]. All mgor astronomical image collections adhere to the FITS standard.

Briefly, FITS isadataformat designed to provide a platform-independent means for
exchange of astronomical data. A FITS datafileis composed of a sequence of Header
Data Units (HDUs). The header consists of “keyword=value” statements, which describe
the organization of the datain the HDU and the format of the contents. It may provide
additional information, for example, about instrument status or the history of the data.
The data follow, structured as the header specifies.

The relationship between the pixel coordinates in the image and sky coordinates on the
sky is defined by the World Coordinate System (WCS) [17]. Montage will support all
the map projections supported by WCS.

All information describing the format and data type of the image, and its geometry on the
sky (including WCS-supported map projection), are defined as header keywords in the
FITS standard specifications. Montage will use these standard keywords to discover
information on the format and geometry of an input image, and will use them to convey
the corresponding information about the output images.

42

6.2 Image Data Collections

6.21 2MASS

2MASS is a ground-based survey that has imaged the entire sky at 1 arc second
resolution in three near-infrared wavelengths, 1.25 nm (J Band), 1.65 nm (H Band), and
2.17 mm (Ks Band). Each positionaly and photometrically calibrated 2MASS image is
roughly 2 MB in size and contains 512 x 1,024 pixels covering roughly 0.15 x 0.30
degrees. The full data set, referred to as the “Atlas’ images, contains 4,733, 227 images,
with a total data volume of a little over 10 TB. A second image data set, called
“Quicklook” images, is a compressed version of the Atlas data set. The compression
factor is 20:1, but because the compression islossy, the Quicklook images are suitable for
browsing only.

6.2.2 DPOSS

DPOSS has captured nearly the entire northern sky at 1 arc second resolution in three
wavelengths, 480 nm (J Band - blue), 650 nm (F Band - red), and 850 nm (N Band —
near-infrared). The survey data were captured on photographic plates by the 48" Oschin
Telescope at the Palomar Observatory in California Error! Reference source not
found.. The total size of the DPOSS data accessible by yourSky is roughly 3 TB, stored
in over 2,600 overlapping image plates. The DPOSS plates are each about 1 GB in size
and contain 23,552 x 23,552 pixels covering aroughly 6.5 x 6.5 degree region of the sky.

6.2.3 SDSS

SDSSisusing adedicated 2.5 m telescope and alarge format CCD camerato obtain
images of over 10,000 square degrees of high Galactic latitude sky in five broad spectral
bands (U, g, r', i' and Z', centered at 3540, 4770, 6230, 7630, and 9130 A, respectively).
The final image data collection is scheduled for public release in July 2006. Aninitial
public release in June 2001 covered about 460 square degrees of sky, and subsequent data
releases will occur every 18 months or so until the full image collection isreleased in
July 2006. Thisfull collection will contain 1 billion Atlas images with a data volume of
1.5TB.

6.3 Disposition of the Image Data Collections

6.3.1 2MASS

Currently, 47% of the 2MASS Image data collection has been released to the public,
roughly 1.8 million images with a data volume of 4 TB. The images are stored on the
High Performance Storage Server (HPSS) at the San Diego Supercomputer Center
(SDSC), and managed by SDSC's Storage Resource Broker (SRB). The SRB is a
scalable client-server system that provides a uniform interface for connecting to
heterogeneous data resources, transparently manages replicas of data collections, and

43

organizes data into “containers’ for efficient access. The yourSky server uses a set of
client programs called SRB Tools to access selected 2MASS plates in batch mode from
the SRB, and the same client is adequate to support development of Montage.

As part of the NV O project, SDSC will replicate the 2MASS data on spinning disk there
and via SRB to amirrored HPSS system at CACR. The schedule has to be determined,
but it is anticipated that the replication can be performed before the end of December
2002.

6.3.2 DPOSS

The DPOSS data are currently replicated on the HPSS system at CACR. SDSC has
committed to replicating the data at SDSC for processing under the NVO.

6.3.3 SDSS

The publicly released SDSS images are currently served from the SDSS archive at the
MultiMission Archive at Space Telescope (MAST), where they reside on spinning disk.
Our intention is to replicate the public data on spinning disk at SDSC. SDSS has
informally agreed to this plan, but aformal agreement has yet to be put in place. This
agreement will be negotiated by the NV O project.

7. Montage Design and Use Cases

This section demonstrates how the flexible and modular design of Montage supports the
Science Use Cases described in the Software Engineering Plan [4]Error! Reference
sour ce not found..

Use Casel - Science Analysis

The Spitzer First Look ancillary VLA image is a 2x2 degree radio image of a field that
will be observed by Spitzer. As a field uncluttered by galactic radiation in Spitzer
continuous viewing zone, it is a prime candidate for deep imaging of extragalactic
sources. The VLA image contains many radio “ blobs,” many of which appear to be
interesting and perhaps bizarre objects. Interpretation of these objects requires multi-
wavel ength measurements on a common projection and spatial scale. DPOSS, SDSS and
2MASS provide the broad wavelength base for analysis of these objects, yet analysisis
tedious and error prone because the images delivered by these projects have different
gpatial resolutions, coordinates and projections. MONTAGE will eliminate these
difficulties by delivering mosaics from these data sets at a common resolution, projection
and in a common coor dinate system.

Thisisabasic small region mosaic problem and can be run on a single workstation or
collection of workstations. Since the comparison will be with the VLA image, the

mosai ¢ should be constructed using the same projection and scale. The processing steps
could in fact be run manually and would be as follows:

Extract FITS header from VLA image

Identify 2MASS (or whatever) images for the region and collect the images if
running thisin the standalone (i.e. non-GRID) mode. There are IRSA web
servicesto do thisin the case of the 2MASS images and we expect similar
services to be available for the other datasets at some future date.

Using the FITS header, reproject each of the input images to the new system
using mProject for each one individually or mPr oj Exec to processthem all ina
loop (based on asummary list prepared by mimgtbl). This step takes by far the
majority of the time.

Sincethisisasmall region, the user will probably opt to have a custom
background correction fit made. Thefirst step in thisisto determine exactly
which image overlap, using mOverlaps acting on a summary metadata table for
the reprojected images (again prepared by mimgtbl).

mDiff isthen used to actually generate the difference images for the overlapping
pairsidentified in the last step. Thisisusualy runinaloop by mDiffExec using
the table output by mOverlaps.

mFitplane characterizes each difference image by aleast-squaresfit plane
(excluding flux outlier pixels). Thisisusually runin aloop using mFitExec,
which works off the table prepared by mOverlaps. The results go into atable
used in the next step.

mBgM odel iteratively fits the table generated by mFitplane/mFitExec and
determines the “best” background to remove from each of the original reprojected
images.

Thefinal step in the background correction process is to apply the correctionsto
theimages. Thisis done using mBackground on each image (usually by way of
mBgExec looping over the table generated by mBgM odel).

These corrected/reprojected images can now be coadded into the final mosaic
using mAdd (again using a summary metadata table for the corrected images
prepared by mimgtbl).

Use Case |l — Observation Planning

The Multiband Imaging Photometer (MIPS) [19] aboard the Spitzer Telescope has a scan
length of 0.5°. Observations with MIPS must avoid bright sources that will saturate the
detector, and is normally done by identifying infrared sources on 2MASSimages. Thisis
at present difficult to do because the 2MASSimages are 512 x 1024 arcsec on a side and
the effects of background variation from image to image complicate identification of
sourcesin a consistent way. Mosaics of 2MASSimages that have a flat background (not
necessarily science grade) will make the task of identifying bright sources much easier to
perform.

45

Here the need isfor a global mosaic of the entire 2MASS dataset. While the scenario in
Use Case | till applies, the processing is operationally quite different. Here, the entire
2MASS dataset should be reprojected into aregular pattern of large image outlines
covering the sky, on the order of 5-10 degreesin scale. The overlap analysis and
background fitting should be done once globally (or in a hierarchical local/global way)
and the correction parameters for all 2MASS images stored in a permanent public
database.

Since this would be done using GRID resources, the parallelization inherent in the
architecture can be exploited to the maximum. Rather than use mProj Exec, al there-
projection jobs can be added to a pool of tasks and performed by as many processors as
areavailable. The sameistrue of the other “list driven” processes above (mDiffExec,
mFitExec, mBgExec). The precise methodology to be used is TBD but will be built
using standard GRID programming toolkits (Globus, Condor, DAGMAN, etc). The Users
Guide delivered with the Montage software will give full details on how users can apply
these grid resources.

Requests for mosaics of a specific location could then be satisfied by simply background
subtracting (mBackground) and co-adding (mAdd) the already reprojected images
(which would be kept permanently). There would also probably be standard “ products’;
images on the plate scale defined above covering the whole sky.

If a custom projection was desired, the original images would probably be used (to avoid
losses due to repeated projection), re-projecting (mPr oj ect) them as desired but using the
“standard” background correction parameters from the database instead of the
background modeling described above.

Use Case |l Il — Science Product Generation

The Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE) will use the
Soitzer Infra Red Array Camera (IRAC)[20] to survey approximately 220 square degrees
of the Galactic plane, covering a latitude range of £ 1°, and a longitude range of
abs(1)=10-65 °. GLIMPSE will be a confusion-limited survey of the Galactic Plane
(approximately 300 mly) in the four IRAC bands. The survey will produce several
hundred GB of data in the form of catalogs and images, which will be delivered to the

S RTF Science Center for dissemination to the entire astronomical community. The
GLIMPSE project requires a mosaic engine that is portable, uses only standard
astronomy packages, is highly scaleable and is easy to fine-tune. These are the goals of
Montage, which is therefore a serious candidate for GLIMPSE processing.

In this case, the input data set is not one of the data sets being used for Montage
development and testing and the processing will be run on a custom cluster of processing
engines (using home-grown pipeline executive code). The Montage modules are meant
to be flexible enough to accommodate any FITS image, so the same paradigm as
described in Use Case | should work. Here, however, the user would probably opt for
writing their own executive logic rather than using the mPr oj Exec, mDiffExec,

46

mFitExec, and mBgExec modules (which are simple constructs in any case) and manage
parallelization themselves (or using off-the-shelf tools such as Condor). Only the
executive logic needs customization: the processing modules will be used as delivered.
The Montage User’s Guide will give a complete description of how users can build their
own executives.

Use Case |V — Outreach

Large-scale image mosaics are useful in promoting general interest in infrared
astronomy through their use in local image galleries as well as the devel opment of
posters, pamphlets, and other media for both the general public and educators. Mosaics
showing data at multiple wavelengths on a common projection, spatial scales etc exert a
powerful influence on the imagination, especially when made part of a larger permanent
display at a museum or planetarium. Access to Montage will allow production of large
scale images from multiple data sets that would otherwise be very labor-intensive to
accomplish.

Since such images will need to be on a common scale, much the same processing should
be used asin Use Casel. Not all of these images will be mosaics, however. Some will
be simple re-projections of existing images to put them all on the same scale. This can be
done by running them individually through mPr oj ect.

47

[1]
[2]

[3]
[4]
[S]

[6]
[7]

[8]

[9]
[10]

[11]
[12]
[13]
[14]

[15]

[16]

[17]

References

Teragrid website: http://teragrid.org/

Construx Survival Guide Coding Standards:
http://www.construx.com/survivalguide/

“ Software Requirements Specification for Montage”. Version 1.0 (May 31, 2002);
http://montage.i pac.cal tech.edu/proj ectdocs/Requi rements.doc

“ Software Engineering Plan for Montage’. Version 1.0 (May 31, 2002);
http://montage.i pac.cal tech.edu/proj ectdocs/ SEP.doc

J. O'Rourke, Computational Geometry in C (Cambridge University Press, 1998).
p220. (Chapter 7)

Definition of Girard' s Theorem http://math.rice.edu/~pcmi/sphere.

A.S. Fruchter, and R.N. Hook. “Linear Reconstruction of the Hubble Deep Field,”
http://www.stsci.edu/~fruchter/dither/drizzle.html

Mopex, the Spitzer Science Center Mosaic Engine,
http://ssc.spitzer.caltech.edu/postbcd/doc/mosai cer. pdf

Montage Milestones (available at http://montage.ipac.caltech.edu/ms.html)

Pegasus website: http://www.isi.edu/~deelman/pegasus.htm. See also: E.
Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi,
M. Livny, Pegasus: Mapping Scientific Wor kflows onto the Grid, Across Grids
Conference 2004, Nicosia, Cyprus

Condor website: http://www.cs.wisc.edu/condor/

Montage Web Portal: http://montage.jpl.nasa.gov/

Montage online documentation: http://montage.ipac.caltech.edu/docs

Description of the IRSA “svc” library.
http://montage.i pac.caltech.edu/Documentation/svc.html

“An Architecture for Access to a Compute Intensive Image Mosaic Servicein the
NVQO”. G. Bruce Berriman, David Curkendall, John Good, Joseph Jacob, Daniel
S. Katz, Mihseh Kong, Serge Monkewitz , Reagan Moore, Thomas Prince, Roy
Williams. To appear in “Astronomical Telescopes & Instrumentation: Virtual
Observatories,” SPIE 4686-18

The Flexible Image Transport System (FITS), http://fits.gsfc.nasa.gov,
http://www.cv.nrao.edu/fits

E.W. Greisen and M. Cal abretta, Representation of Celestial Coordinates In
FITS http://www.atnf.csiro.au/people/mcal abre/WCS.htm

48

[18] The Digitized Palomar Observatory Sky Survey (DPOSS),
http://www.astro.caltech.edu/~george/dposs

[19] MIPSwebsite: http://spitzer.caltech.edu/SSC/MIPS/mips_intro.html
[20] IRAC website: http://spitzer.caltech.edu/SSC/IRAC/SSC_B4.html

49

2MASS

ANSI
API
ASCII

CACR
CCD
CaGl

DAG
DBMS
DPOSS

EJB
FITS

GB
GLIMPSE
GNU

HDU
HEASARC
HPSS
HTTP

IDE
IPAC
IPG
IRAC
IRSA
IS

JPL

MAST

MCS

MDS

MIPS (astr onomy)
MIPS (computers)
M SX

NCSA
NSF
NVO
PBS

OASIS

Acronyms

Two Micron All Sky Survey

American National Standards Institute
Application Programming Interface
American Standard Code for Information Interchange
Center for Advanced Computing Research
Charge Coupled Device

Common Gateway Interface

Directed Acyclical Graph

DataBase Management System

Digital Palomar Observatory Sky Survey
Enterprise Java Beans

Flexible Image Transport System

GigaByte

Galactic Legacy Infrared Midplane Survey Extraordinaire

Gnu’'s Not Unix

Header Data Unit

High Energy Astrophysics Science ARChive
High Performance Storage Server

Hyper Text Transfer Protocol

Interactive Development Environment
Infrared Processing and Analysis Center
Information Power Grid

InfraRed Array Camera

InfraRed Science Archive

Information Sciences | nstitute

Jet Propulsion Laboratory

MultiMission Archive at Space Telescope

Metadata Catalog Service

Globus Monitoring and Discovery Service
Multiband Infrared Photometer for Spitzer
Million Instructions per Second

Midcourse Space Experiment

National Center for Supercomputing Applications

National Science Foundation
National Virtual Observatory

Portable Batch System

On-Line Archive Science Information Services

50

RLS Globus Replica L ocation Service

ROME Reguest Object Management Environment
SAO Smithsonian Astrophysical Observatory
SDSC San Diego Supercomputer Center
SDSS Sloan Digital Sky Survey
SRB Storage Resource Broker
STScl Space Telescope Science I nstitute
TB TeraByte
TBD To Be Decided
URL Uniform Resource Locator
VLA Very Large Array
WCS World Coordinate System
XML eXtensible Markup Language
Glossary
Condor A workload management system for compute-intensive jobs
DAGMan Scheduler to submit concrete workflows to Condor
MyPr oxy Credential respository for the TeraGrid
Pegasus Scheduling software that transforms abstract workflows into concrete workflows,
which can then be submitted using DAGMan
TeraGrid A distributed computing infrastructure for open scientific research

51

Appendix A: Sample FilesUsed With TeraGrid Portal

Al. Sample XML Abstract Workflow for M51

adag M51.xml:
<?xm version="1.0" encodi ng="UTF-8""?>
<adag xml ns="http://ww. gri phyn. or g/ chi ner a/ DAX"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="htt p://ww. gri phyn. or g/ chi mer a/ DAX
http://ww. gri phyn. org/ chi nera/ dax-1.5. xsd"
count ="1" index="0" nane="test">

<filenane file="2nmass-atl as-980527n-j 0230033.fits" |ink="input"
i sTemporary="fal se"/>

<filenane file="2nmass-atl as-980527n-j 0240232.fits" |ink="input"
i sTemrpor ary="fal se"/ >

<filenane file="p2mass-atl as-980527n-j0230033.fits" |ink="inout"
i sTemporary="true" tenporaryH nt="tenp"/>

<filenane file="p2mass-atl as-980527n-j 0240232.fits" |ink="inout"
i sTerporary="true" tenporaryH nt="tenp"/>

<filenane file="diff.1.2.fits" link="inout" isTenporary="true"
tenporaryH nt="tenp"/>

<filenane file="fit.1.2.txt" link="inout" isTenporary="true"
tenporaryH nt="tenp"/>
<filenane file="fits_M1l.tbl" link="inout" isTenporary="true"

tenporaryH nt="tenp"/>

<filenane file="corrections.tbl" |ink="inout" isTenporary="true"
tenporaryH nt="tenp"/>

<filenane file="c2mass-atl as-980527n-j0230033.fits" |ink="inout"
i sTerporary="true" tenporaryH nt="tenp"/>

<filenane file="c2mass-atl as-980527n-j 0240232.fits" |ink="inout"
i sTemrporary="true" tenporaryH nt="tenp"/>

<filenane file="p2nmass-atl as-980527n-j 0230033 area.fits"
[ink="inout" isTenporary="true" tenporaryH nt="tenp"/>
<filenane file="c2mass-atl as-980527n-j 0230033 _area.fits"
link="inout" isTenporary="true" tenporaryH nt="tenp"/>
<filenane file="p2nmass-atl as-980527n-j 0240232 _area.fits"
link="inout" isTenporary="true" tenporaryH nt="tenp"/>
<filenane file="c2mass-atl as-980527n-j 0240232_area.fits"
[ink="inout" isTenporary="true" tenporaryH nt="tenp"/>
<filenane file="diff.1.2 area.fits" |ink="output"
i sTerporary="true" tenporaryH nt="tenp"/>

<filenane file="pimges_M1l.tbl" |ink="input"
i sTemrpor ary="fal se"/ >
<filenane file="cimges M1l.thl" |ink="input"

i sTerporary="fal se"/ >

52

<filenane file="fit list_Ml.thl"

sTenporary="fal se"/ >

<filenane file="tenpl ate_Mb1l. hdr"

sTenporary="fal se"/>
<filenane file="out_ M1l.fits"

<filenane file="out_ M1l area.fits"

sTenporary="fal se"/>

i nk="i nput"

[ink="input"

link="output" isTenporary="false"/>

i nk="out put"

<j ob nane="nProject” id="1D000001" >

<ar gument >

<filenane file="2nmass-atl as-980527n-j 0230033.fits"

i nk="input" isTenporary="false"/>

<filenane file="p2mass-atl as-980527n-j 0230033.fits"

i nk="output" isTenporary="true"/>

<filenane file="tenplate M1l. hdr" |ink="input"

sTenporary="fal se"/ >
</ ar gument >

<uses file="2mass-atl as-980527n-j 0230033.fits" |ink="input"

sTenporary="fal se"/>

<uses fil e="p2mass-atl as-980527n-j 0230033.fits"

i nk="output" isTenporary="true"/>

<uses fil e="p2mass-atl as-980527n-j 0230033_area.fits"

i nk="output" isTenporary="true"/>

<uses file="tenplate_ M1l. hdr" |ink="input"

sTenporary="fal se"/ >
</j ob>

<j ob nanme="nProject” id="1D000002">

<ar gument >

<filenane file="2nmass-atl as-980527n-j 0240232.fits"

i nk="input" isTenporary="false"/>

<filenane file="p2mass-atl as-980527n-j0240232.fits"

i nk="output" isTenporary="true"/>

<filenane file="tenplate_ Mb1l. hdr" |ink="input"

sTenporary="fal se"/>
</ ar gunment >

<uses file="2mass-atl as-980527n-j0240232.fits" |ink="input"

sTenporary="fal se"/>

<uses fil e="p2mass-atl as-980527n-j 0240232.fits"

i nk="output" isTenporary="true"/>

<uses fil e="p2mass-atl as-980527n-j 0240232 _area.fits"

i nk="output" isTenporary="true"/>

<uses file="tenplate_M1. hdr" |ink="input"

sTenporary="fal se"/ >
</j ob>

<j ob name="nDi ff" id="1D000003">

<ar gunent >

<filenane file="p2mass-atl as-980527n-j 0230033.fits"

i nk="input" isTenporary="true"/>

<filenane file="p2mass-atl as-980527n-j 0240232.fits"

i nk="input" isTenporary="true"/>

<filenane file="diff.1.2.fits" |ink="output"

sTenporary="true"/>

<filenane file="tenplate_ M1l. hdr" |ink="input"

sTenporary="fal se"/ >

53

</ ar gunment >

<uses fil e="p2mass-atl as-980527n-j 0230033.fits"
[ink="input" isTenporary="true"/>

<uses fil e="p2mass-atl as-980527n-j 0230033 _area.fits"
link="input" isTenporary="true"/>

<uses fil e="p2mass-atl as-980527n-j 0240232.fits"
link="input" isTenporary="true"/>

<uses fil e="p2mass-atl as-980527n-j0240232_area.fits"
[ink="input" isTenporary="true"/>

<uses file="diff.1.2.fits" |ink="output"
i sTemporary="true"/>
<uses file="diff.1.2 area.fits" |ink="output"
i sTerporary="true"/>
<uses file="tenplate_M1. hdr" |ink="input"
i sTemporary="fal se"/>
</j ob>

<j ob nanme="nFit pl ane" id="1D000004" >
<ar gunent >

-s
<filenane file="fit.1.2.txt" |ink="output"
i sTemporary="true"/>
<filenane file="diff.1.2.fits" link="input"

sTenporary="true"/>
</ ar gunent >
<uses file="fit.1.2.txt" |ink="output" isTenporary="true"/>
<uses file="diff.1.2.fits" link="input"
sTenporary="true"/>
</j ob>

<j ob nane="mConcat Fit" id="1D000005" >
<ar gunent >

<filenane file="fit _list_M1l.tbl" Iink="input"
i sTemrpor ary="fal se"/ >
<filenane file="fits_M1l.tbl" |ink="output"

sTenporary="true"/>

</ ar gument >

<uses file="fit_list_M1l.tbl" |ink="input"
i sTemporary="fal se"/>
<uses file="fits_Mpl.tbl" |ink="output"
i sTemporary="true"/>
<uses file="fit.1.2.txt" link="input" isTenporary="true"/>
</j ob>

<j ob nane="nmBghMbdel " i d="1D000006" >
<ar gunent >

<filenane file="pimges M1l.tbl" |ink="input"
i sTemrpor ary="fal se"/ >

<filenane file="fits _Mbl.thl" |ink="input"
i sTemporary="true"/>

<filenane file="corrections.thl" |ink="output"

sTenporary="true"/>
</ ar gument >

<uses file="pimges_M1l.tbl" |ink="input"
i sTemporary="fal se"/ >
<uses file="fits Mpl.thbl" |ink="input" isTenporary="true"/>

54

<uses file="corrections.tbl" |ink="output"
i sTemporary="true"/>
</j ob>

<j ob nane="mBackground" id="1D000007" >
<ar gument >
-t
<filenane file="p2mass-atl as-980527n-j 0230033.fits"
[ink="input" isTenporary="true"/>
<filenane file="c2mass-atl as-980527n-j 0230033.fits"
i nk="out put” isTenporary="true"/>

<filenane file="pimges M1l.thl" |ink="input"
i sTerpor ary="fal se"/ >
<filenane file="corrections.tbl" |ink="input"

i sTemporary="true"/>

</ ar gunment >

<uses fil e="p2mass-atl as-980527n-j 0230033.fits"
[ink="input" isTenporary="true"/>

<uses fil e="p2mass-atlas-980527n-j 0230033 _area.fits"
link="input" isTenporary="true"/>

<uses file="pimges_M1l.tbl" |ink="input"
i sTemporary="fal se"/>
<uses file="corrections.tbl" link="input"

i sTerporary="true"/>
<uses file="c2mass-atl as-980527n-j 0230033.fits"
i nk="out put" isTenporary="true"/>
<uses file="c2mass-atl as-980527n-j 0230033 _area.fits"
i nk="out put” isTenporary="true"/>
</j ob>

<j ob nane="mBackground" id="1D000008" >
<ar gunment >
-t
<filenane file="p2mass-atl as-980527n-j0240232.fits"
link="input" isTenmporary="true"/>
<filenane file="c2mass-atl as-980527n-j 0240232.fits"
i nk="out put” isTenporary="true"/>

<filenane file="pimges M1l.tbl" |ink="input"
i sTemporary="fal se"/ >
<filenane file="corrections.thl" |ink="input"

i sTemporary="true"/>

</ ar gunent >

<uses fil e="p2mass-atl as-980527n-j 0240232.fits"
[ink="input" isTenporary="true"/>

<uses fil e="p2mass-atl as-980527n-j 0240232 _area.fits"
link="input" isTenporary="true"/>

<uses file="pimges_M1l.tbl" |ink="input"
i sTemrpor ary="fal se"/ >
<uses file="corrections.tbl" link="input"

i sTemporary="true"/>
<uses file="c2mass-atl as-980527n-j 0240232.fits"
i nk="out put” isTenporary="true"/>
<uses file="c2mass-atl as-980527n-j 0240232_area.fits"
i nk="out put" isTenporary="true"/>
</j ob>

<j ob nane="mAdd" i d="1D000009" >

55

<ar gument >

<filenane file="cimges M1l.thl" |ink="input"
i sTerpor ary="fal se"/>

<filenane file="tenplate_ M1l. hdr" |ink="input"
i sTemporary="fal se"/>

<filenane file="out_M1l.fits" |ink="output"

sTenporary="fal se"/>
</ ar gument >

<uses file="cimges_M1l.tbl" link="input"
i sTemporary="fal se"/>
<uses file="tenplate M1l. hdr" |ink="input"
i sTemporary="fal se"/>
<uses file="out_M1l.fits" |ink="output"
i sTemrpor ary="fal se"/ >
<uses file="out_ M1l area.fits" |ink="output"

sTenporary="fal se"/>

<uses file="c2mass-atl as-980527n-j 0230033.fits"
[ink="input" isTenporary="true"/>

<uses file="c2mass-atl as-980527n-j 0230033_area.fits"
link="input" isTenporary="true"/>

<uses file="c2mass-atl as-980527n-j 0240232.fits"
link="input" isTenporary="true"/>

<uses file="c2mass-atl as-980527n-j 0240232_area.fits"
[ink="input" isTenporary="true"/>
</ j ob>

<child ref="1D000003">
<parent ref="1D000001"/>
<parent ref="1D000002"/>
</ child>

<chi |l d ref="1D000004">
<parent ref="1D000003"/>
</chil d>

<chil d ref="1D000005" >
<parent ref="1D000004"/>
</child>

<chil d ref="1D000006" >
<parent ref="1D000005"/>
</ chil d>

<child ref="1D000007" >
<parent ref="1D000001"/>
<parent ref="1D000006"/>
</ chil d>

<child ref="1D000008" >
<parent ref="1D000002"/>
<parent ref="1D000006"/>
</ chil d>

<child ref="1D000009" >
<parent ref="1D000007"/>
<parent ref="1D000008"/>
</ chil d>

56

</ adag>

A2. Sample Image Table

images M51.thl:

\ dat at ype=fitshdr

| cntr| ctypel] ctype2|naxisl|naxis2| crval 1| crval 2| crpix1
crpi x2| cdel t 1| cdelt2| crota2

SRB| Qui ckl ook|

file

| int] char | char | i nt| i nt| doubl e| doubl e| doubl e
doubl e| doubl e| doubl e] double

char | char |

char |

1 RA---SIN DEC--SIN 512 1024 202.361114 47.326477 256.50
512.50 -0.00027778 0.00027778 -0.02065 /hone/thh. cal tech/ n-213031332-
980527-023- 0033-] \ 2MASSDat aPat h\/980527n/ s023/i nage/j i 0230033.fits. H
2mass- at | as-980527n-j 0230033.fits

2 RA---SIN DEC--SIN 512 1024 202.521394 47.113192 256.50
512.50 -0.00027778 0.00027778 0.00339 /hone/thh. cal tech/n-213031332-
980527-024- 0232-) \ 2MASSDat aPat h\ / 980527n/ s024/ i mage/j i 0240232.fits. H
2mass- at | as-980527n-j 0240232.fits

A3. Sample Projected Image Table

pimages M51.thl:
\ dat at ype=fitshdr
| cntr| ctypel] ctype2|naxisl|naxis2| crval 1| crval 2
crpi x1| crpi x2| cdel t 1| cdel t2| crota2|equi nox|
file
| int] char | char | i nt| i nt| doubl e| doubl e|
doubl e| doubl e| doubl e| doubl e] doubl e] i nt|
char |
1 RA---TAN DEC - TAN 516 1027 202. 441157 47.219954 63. 50

130. 00 -0.00027778 0.00027778 0.05936 2000 p2mass-at| as- 980527n-
j 0230033. fits

2 RA---TAN DEC--TAN 513 1024 202.441157 47.219954 452. 50
896.00 -0.00027778 0.00027778 0.05936 2000 p2nass-at | as- 980527n-
j 0240232.fits

A4. Sample Corrected Image Table

cimages M51.thl:
\ dat at ype=fitshdr
| cntr| ctypel] ctype2|naxisl|naxis2| crval 1| crval 2
crpi x1| crpi x2| cdel t 1| cdel t2| crota2|equi nox|
file
| int] char | char | i nt| i nt| doubl e| doubl e
doubl e| doubl e| doubl e| doubl e] doubl e] i nt|
char |
1 RA---TAN DEC- - TAN 516 1027 202. 441157 47.219954 63. 50

130. 00 -0.00027778 0.00027778 0.05936 2000 c2nmmss-atl as-980527n-
j 0230033.fits

57

2 RA---TAN DEC - TAN 513

896. 00 -0.00027778 0.00027778 0.05936

j 0240232.fits

AS5. Sample Fit Plane File Table

fit_list_M51.tbl:
|cntrl]cntr2] st at |
1 2 fit.1.2. txt

1024 202. 441157 47.219954 452.50

A6. Sample Montage Template File

template_M51.hdr:

SIMPLE =T

BITPI X = -64

NAXIS =2

NAXI S1 = 906

NAXI S2 = 1793

CTYPE1 = 'RA---TAN
CTYPE2 = 'DEC -TAN

EQUI NOX = 2000

CRVAL1 = 202.441156834
CRVALZ2 = 47.219953535
CDELT1 = -0. 000277780
CDELT2 = 0. 000277780
CRPI X1 = 453. 5000
CRPI X2 = 897. 0000
CROTA2 = 0. 059358733
END

2000 c2mmss- atl as-980527n-

A7. Sample Abstract Workflow Service Log File

log_M51.txt:

Fri Jan 9 09:33:34 PST 2004 : Started DAG processing for |ocation

"nbl" and size ".2"
[struct stat="OK", count="3"]

Fri Jan 9 09:33:38 PST 2004 : Created input imge table with

M2MASSLI st
[struct stat="0K", count=2]

Fri Jan 9 09:33:38 PST 2004 : Created Montage tenpl ate header file

wi th nmivakeHdr
[struct stat="OCK", count="2"]

Fri Jan 9 09:33:38 PST 2004 : Created projected and background
corrected i mage tables w th nDAGTbI s

[struct stat="0K", count=1]

Fri Jan 9 09:33:38 PST 2004 : Created |ist of overlapping inages wth

nOver | aps

Fri Jan 9 09:33:38 PST 2004 : Finished DAG processing for |ocation

"nmbl" and size ".2"

58

