Montage: An On-Demand Image Mosaic Service for the NVO

G. B. Berriman, D. Curkendall, J. Good, J. Jacob, D.S. Katz, M. Kong, T. Prince, R. Williams
Montage - Custom Image Mosaics

http://montage.ipac.caltech.edu

- User specified size, WCS projection, coordinates, spatial sampling, rotation
- Assumes input files are FITS & WCS compliant
- Supports drizzle algorithm

Science Drivers:
- Science Grade Images
- Impact of background rectification on fidelity of input images is understood and documented
- Analyze diverse images as if part of same “multi-wavelength image”
Schedules:
- Semi-annual deliveries of code from Feb 2003
- Code available for download
- Operational service starting September 2003
- Order mosaics through existing portals
- Final Delivery Jan 2005
- Early deliveries emphasize accuracy, later ones speed & throughput

Platforms:
- Linux 6.x, 7.x
- Solaris 2.7/2.8
- AIX
- ANSI compliant code; design for portability
Montage Background Correction Procedure

Example: Three overlapping reprojected 2MASS images

A correction is calculated for each image based on all the differences between it and its neighbors (an approximation to a least squares fit to the difference data with brightness outlier pixels excluded). The correction is currently a plane but could be a higher order surface.

This is done for all images, then half the correction determined is applied (to a parameter database; equivalent numerically to applying it to the images).

The process is iterated until step differences for all images becomes small.
Montage Background Correction Results

Reprojected Background Corrected Images
Montage Reprojection Module

Central to the algorithm is accurate calculation of the area of spherical polygon intersection between two pixels (assumes great circle segments are adequate between pixel vertices).

Arbitrary Input Image

Input pixels projected on celestial sphere

FITS header defines output projection

Output pixels projected on celestial sphere

Reprojected Image

Total Flux
Sky Area Coverage (steradians)
Coordinated Execution Across Multiple GRID Processors

Input Images

Coaddition of images:

Simple coadd for final mosaic (sky areas used as weights)

Reprojected Images

Montage Parallelization

FITS header

mProject

mAdd
Performance

Collaboration with San Diego Supercomputer Center
- Leesa Brieger, Reagan Moore
- IBM Blue Horizon
 - 64 nodes
 - *Prototype* Montage v1.2
 - Processing Time: 4 minutes

2MASS Mosaic;
1 sq deg centered at l=359, b=0.2 (55 images)
Deployment of Montage

Performance Goal On Teragrid by January 2005:
Sustain a throughput of at least 30 square degrees per min on 1024 x 400 Mhz R12K O3000 or equivalent